
Combining Event and Signal Processing in the

MAX Graphical Programming Environment

Miller Puckette
l�Institut de Recherche et Coordination Musique�Acoustique

�� Rue St� Merri� ����	 Paris� France
miller�puckette
ircam�fr

c����� MIT� Reprinted from Computer Music Journal ������ pp� �	
���

MAX �Puckette ����� Opcode ����� is a graphical programming environ�
ment for developing real�time musical applications� First written for the Apple
MacIntosh computer	 it has been ported to the NeXT computer as a part of
the IRCAM Music Workstation �
IMW�� project �Lindemann ����a�� From its
earliest conception	 MAX was intended as a uni�ed environment for describing
both control and signal 
ow� Historically it has developed as a MIDI �i�e�	 con�
trol� program primarily because the �X �Favreau �����	 IRCAM�s earlier signal
processing engine	 could only communicate with the MacIntosh over a MIDI
�serial� line�

The IMW o�ers an opportunity to joinMAX more intimatelywith a number�
crunching engine capable of doing high�quality audio synthesis and processing
in real time� The DSP cards now available for the MacIntosh line of computers	
while many times less powerful than the IMW	 o�er a similar possibility� This
paper describes how MAX has been extended on the NeXT to do signal as well
as control computations� Since MAX as a control environment has already been
described elsewhere	 here we will o�er only an outline of its control aspect as
background for the description of its signal processing extensions�

The main purpose for making electronic music production run in real time
is so that a musician can exercise some sort of live control over the music� The
problem of de�ning that control is a much harder one than that of de�ning the
signal processing network which ultimately will generate the samples� The sam�
ple generation problem has historically been considered 
hard� simply because
of its stringent computational requirements� Today	 a real�time programmable
audio synthesis and processing engine can be bought at a price that researchers	
and even some musicians	 can pay� It is therefore not surprising that many sys�
tems are now being proposed for graphical signal network editing� recent ones
are described in �Bate �����	 �Minnick �����	 and �Helmuth ������ But the con�

�



trol problem	 that of making the signal network respond in an instrument�like
way to live human control	 is not made appreciably easier by the availability of
faster and faster hardware� Today	 the challenge for a signal processing network
editor is to open itself up to a wide range of control possibilities�

To take complete control of all the possibilities of some kind of signal process�
ing 
patch	� or network	 it may be necessary to specify independently where all
the control is coming from� the basic pitch and tempo material	 timbral changes	
pitch articulation	 whatever� These should be controllable physically	 sequen�
tially	 or algorithmically� if algorithmically	 the inputs to the algorithm should
themselves be controllable in any way� The more a given situation relies on
unusual synthesis methods or input devices	 the more acutely we need to be
able to specify exactly what will control what	 and how�

MAX as a Control Environment

The following description will adhere to the NeXT version of MAX as it stands
at the time of this writing� David Zicarelli has made many extensions to the
MacIntosh version of the program which are not yet available on the NeXT�
He has also re�ned and extended the graphical presentation of the MacIntosh
program in many ways which are also not re
ected in the NeXT version shown
here�

The fundamental concept in MAX is the patch� A patch is a collection of
boxes connected by lines� The boxes represent objects which wait for messages
to be passed to them	 at which time they may respond by passing messages to
other boxes� Boxes may have inlets and outlets	 which appear as dark rectangles
on top of and on bottom of the boxes� The line segments connect outlets to
inlets� any message the source object passes to its outlet is passed on to all the
inlets connected to it�

The messages that are passed down the lines consist of an ordered list of
atoms	 each of which may be a number ��xed or 
oating point� or a symbol�
Any message that can be passed has a printable equivalent� Messages frequently
consist of a single number	 or of the symbol 
bang	� which is used conventionally
to denote an event which has no parameters�

In addition to sending and receiving messages �usually via the inlet�outlet
mechanism�	 objects in MAX may access the clock or MIDI I�O� The clock is
accessed via a simple callback mechanism� An object may allocate any number
of desired 
virtual clock� objects� Each virtual clock may be set to call the client
object back at a given time� the callback time of a virtual clock may be changed
at will or the callback may be cancelled� There is only one priority� An object
wishing to receive incoming MIDI messages inserts itself on the appropriate
MIDI callback list� MIDI output is spooled by calling a library function�

MAX may therefore be implemented by a fairly simple scheduler	 at least
compared to the schedulers described in �Boynton ����� or �Anderson ������ On
the NeXT	 the scheduler is provided by the FTS system �Puckette �����	 which

�



TEXT BOXES INDICATORS/CONTROLS

COMMUNICATION

class

message

comment

button

toggle

integer

float

slider

input

output

Figure �� The box types in MAX�

also provides a DSP duty cycle clock which is used for the signal processing
extension	 and an interprocessor messaging facility�

A patch is either in 
run� or 
edit� mode� In run mode	 mouse and key
actions are sent directly by the patcher to the appropriate object� in edit mode
the same actions are used to add	 remove	 or change boxes and lines�

The patcher�s ten types of boxes are divided into three groups� indica�
tors�controls	 text	 and input�output	 as shown in Fig� �� The controls include
a momentary button	 a toggle switch	 a slider	 and �xed and 
oating point num�
ber boxes� All have one inlet and one outlet� The momentary button outputs
the message 
bang� �i�e�	 passes 
bang� to its outlet� whenever it is either clicked
on �in run mode� or it receives a MAX message� The other controls maintain
numerical values and output them whenever either their values are changed by
typing or mousing	 or they receive a 
bang� or any message whose �rst argu�
ment is a number �in which case the value is updated accordingly before being
output��

There are three kinds of text boxes� 
class	� 
message	� and 
comment��
In a class box the text is taken to be the class and creation arguments for an

�



Figure �� The sub�patch at right de�nes the 
patcher� box at left�

object which will inhabit the box� The object thus created may in turn create
some number of inlets and�or outlets� these are shown graphically on the box�
The only mouse or key action which class boxes may respond to in run mode is
a double click	 which is often de�ned to open a subwindow relevant to a given
object�

The 
message� box contains one or more message�s� which are sent to their
destinations every time either 
bang� or a message starting with a number is sent
to the box� The message may contain variables which are set to the arguments of
the incoming message� Clicking on the message box �in run mode� is equivalent
to sending it a 
bang� message� Multiple messages may be separated by commas
or semicolons� After a semicolon	 the next atom of text in the message box is
taken to specify the name of a new target� thus	 messages in a single box may be
sent to many di�erent destinations� The message target is initially the message
box�s outlet�

The 
comment� box is used to write text on the patch for labels and com�
ments�

�



A B

Figure �� �A�� a class box in MAX� �B�� a small network�

The input�output boxes are used in a patch which is to be represented as
a box appearing in another patch� �The interior patch is called a sub�patch��
An example of a sub�patch	 shown in Fig� �	 adds one to values appearing on
its inlet and passes the result to its outlet� Patches may be nested as deeply
as desired� Alternatively to typing 
patcher� in a class box	 one may type
the name of a �le containing a patch� The embedded patch is then called an
abstraction� the abstractions mechanism is useful when many copies of the same
patch are needed	 as in Figs� � and �� Changes to the �le then propagate to all
the instances�

Execution Order

By convention	 if an object has more than one inlet	 its leftmost inlet is the

active� one� passing a message to that inlet causes something to happen	 and
passing messages to the other inlets simply changes the state of the object� For
example	 the box shown in Fig� � adds two numbers which are taken from the
two inlets �call them x and y�� The values of x and y are initially � and ���
When the number �	 for example	 is sent to the left inlet	 x is set to � and the
box outputs the sum x�y	 or ��� If the number � is now sent to the right inlet	
y is set to � but nothing is output� Sending � to the left inlet would now output
��

More complicated objects may take a wider variety of di�erent messages
than can be conveniently di�erentiated by the inlet mechanism� For exam�
ple	 a sequencer might take 
start	� 
stop	� 
pause	� 
continue	� and so on	 as
messages� In such a case	 message boxes would be used to specify the desired

�



messages� Inlets other than the rightmost inlet �which really makes a direct
connection to the object itself� serve as a shorthand for an appropriate message
box	 which could be	 for example	 
in� ��� where the variable �� assumes the
value of an incoming message�s �rst argument in the style of a shell in UNIX�

It is frequently important to get messages to their destinations in a particular
order	 with an action�causing message arriving at a given object after all the
modifying information �such as values sent to inlets other than the leftmost�
has been communicated� For example	 the multiplication described above would
give a di�erent output if the 
�� were sent before the 
���

The order in which events will occur may be predicted by looking at a patch�
Any box which passes messages to more than one outlet for a single event �i�e�	 a
single incomingmessage	 timeout	 or MIDI input� passes messages to the outlets
in right�to�left order� This choice was taken since a box�s leftmost inlet should
be passed a message last if messages to other inlets are to have an e�ect on its
action� When an outlet which is connected to more than one inlet is passed
a message	 the inlets receive the message in right�to�left order� Messages are
function calls which do not return until all resulting messages have also been
passed� Thus	 in Fig� �	 the number boxes would be sent values in the order �c	
a	 d	 b	 d�� note that 
d� receives two messages�

MAX is not a data
ow language� the boxes which make up a patch usually
contain some local state� Data
ow�s independence of the order in which the
inputs to an operation become available cannot be achieved here� On the other
hand	 MAX�s object�oriented approach is much more appropriate for systems
which must respond to external requests for action� In this scenario	 which is
typical of live human�machine interaction	 the order in which transactions occur
is often signi�cant� A violin should be tuned before playing it	 not after	 for
best results�

The Tilde Classes

Signal processing in MAX is carried out by a collection of 
tilde classes� which
communicate via inlets and outlets through the message	 
signal�� As a conven�
tion	 the names of tilde classes all end in tilde	 as in sig 	 osc� 	 etc� At the time
of this writing	 twenty�four tilde classes have been implemented and eight more
are planned� An object belonging to a tilde class is called a tilde object�

The tilde objects carry out signal processing tasks on vectors of a �xed size
N	 typically between �� and ��� The DSP duty cycle time is set to the sampling
rate divided by N� For each DSP duty cycle period	 every running tilde object is
called to carry out its duty cycle action� This action may reference signal inputs
and�or outputs �which appear as vectors of size N�	 and�or the tilde object�s
instance space�

The tilde objects must intercommunicate at setup time in order to determine
a calling order	 and the addresses of input and output signals	 to be used in the
DSP duty cycle� This is managed via the 
signal� message	 which the tilde

�



objects pass among themselves via inlets and outlets� 
Signal� is an ordinary
MAX message	 and no extension of the inlet�outlet mechanism was made to
introduce it�

A network change is re
ected in a change in the DSP duty cycle call list
whenever a dac object is sent the 
start� message� The 
stop� message clears
the call list� If a tilde object is destroyed by editing the patch	 the object acts
to clear the call list as part of its cleanup	 since the call list might refer to the
object�s instance space�

Tilde classes communicate with control objects through their instance data�
For example	 a two�pole �lter	 f�p 	 is de�ned which maintains three �lter co�
e�cients which are used during the DSP duty cycle� These coe�cients may be
changed via messages	 since the same instance data an f�p uses during DSP
processing is accessible to it as it handles messages�

DSP objects may not initiate messages during the DSP duty cycle �the other
DSP objects might not be in a coherent state�	 but they may set timeouts� For
example	 a threshold class could be de�ned	 which would set a timeout with
zero delay when its input signal met a certain condition� the timeout would
then occur during message processing after the DSP duty cycle �nished� There
is therefore a small but nonzero round�trip delay between messaging and signal
computation�

Examples

A simple patch	 shown in Fig� �	 outputs a cosine wave whose frequency is
controlled by incoming MIDI note�on messages� The signal�processing part of
the patch is de�ned by the sig 	 osc� 	 line 	 � 	 and dac objects� The sig is a
message�to�signal convertor	 taking 
oating�point numbers as input and creating
a signal output whose samples are all equal to the most recent value received�
The osc� takes a frequency and phase o�set as signal inputs and outputs a
cosine wave �calculated by interpolating table lookup� of unit amplitude� Since
its phase o�set input is disconnected it is taken as zero� The cosine is then
multiplied �via � � by the output of the line breakpoint envelope generator	
which may be passed breakpoints as messages of the form �target�value time�in�
milliseconds�� The dac then sends the result to both channels of audio output�

The message box at upper left is used as a button� clicking on it passes
the messages 
start� to the dac 	 
����� to the sig 	 and 
��� ��� to the line �
�The objects such as 
r freq� act as remote message receivers� 
s freq� is a
remote message sender�� The chain at lower left takes in MIDI note�on messages	
discards those of velocity zero	 displays the resulting pitch �ignoring velocity�	
converts to a frequency and sends it to the 
r freq�� The two message boxes at
top center ramp the amplitude up and down when activated�

In this example	 three asynchronous event sources are merged� mouse clicks	
incomingMIDI	 and the DSP duty cycle� The boundaries between event sources
occur at the inlets of the tilde objects	 which change their state in ways that is

�



Figure �� A patch to generate a single amplitude�controlled sine wave�

later re
ected in their DSP behavior�
Fig� � shows a MIDI�controllable bank of eight oscillators whose outputs

are summed� Here	 the majority of the DSP duty cycle is hidden in the osc�pat
abstraction	 which is shown in Fig� �� Osc�pat has a signal inlet	 a control inlet	
and a signal outlet� The oscillator�s output is added to the signal inlet and the
sum put on the signal outlet� The control inlet of osc�pat takes �velocity	 pitch�
pairs� If the velocity is zero the line is turned o� with the 
�� ���� message�
otherwise a new frequency is sent to the sig and the line is turned on�

The sig and line also have signals connected to their inlets� These signals
are ignored but serve to constrain the DSP duty cycle building algorithm not to
schedule them too far in advance �which would waste memory since their results
would have to be stored longer��

Finally	 Fig� � shows a patch which grew out of a sonic experiment	 and
which is shown to better indicate the range of available signal processing and
control elements� The patch makes a spectrally rich signal by waveshaping �via
the leftmost osc� and the clip �	 and 
anges and reverberates the result� Ad�
ditional tilde objects include delwrite and vd �writing to a delay line named

del�� and reading from it with a variable delay time�	 and print which prints
out a vector of N samples for debugging	 whenever it receives the 
bang� mes�
sage�

�



Figure �� Polyphony	 using the 
loco� object and an abstraction	 
osc�pat��

�



Figure �� The de�nition of 
osc�pat� used in Figure ��

��



Figure �� A real patch�

��



How the DSP Duty Cycle Call List is Built

The 
signal� message acts as a token used by the tilde objects to simulate a
data�driven data
ow network� that is to say	 each tilde object can 
run� when
all its signal inputs are de�ned	 and running a tilde object de�nes all its signal
outputs� As the simulation is carried out	 each time a tilde object is 
run� it
appends itself to the call list	 specifying any arguments needed by its duty cycle
action�

The 
signal� message takes two integer arguments� a selector �one of the
constants COUNTINPUTS	 COUNTOUTPUTS	 or DOIT�	 and the address of
a signal object� When a dac object receives the 
start� message	 it �rst traverses
the list of all tilde objects	 causing each one to pass a 
signal COUNTINPUTS�
message to all its signal outlets� For each signal inlet a count �its input count�
is thus taken	 equal to the number of signal outlets connected to it�

The list of all tilde objects is then traversed a second time	 and any tilde
object which has no signal inlets	 or whose input counts are all zero	 is put on
the call list�

Each time a tilde object is put on the call list	 new signals are allocated for all
its signal outlets	 and the outlets are passed �rst a 
signal COUNTOUTPUTS�	
then a 
signal DOIT�	 message with the address of the newly allocated signal�
The �rst message is used simply to count the number of inlets connected to
each outlet �which is remembered by the signal�� The DOIT message informs
the inlet that the signal in question may now be used�

Thus	 when a tilde object receives the 
signal DOIT� message in some inlet	
it can determine whether all its inputs are available� After decrementing the
inlet�s count	 if all inlet counts are now zero we can put the receiving tilde object
on the call list	 and repeat the actions of the above paragraph recursively� At
the time we put the new object on the call list	 we know the addresses of all the
input and output signals	 as well as any instance data that might be needed by
the duty cycle routine�

The signal that is allocated for a signal outlet when a tilde object is put
on the call list may be freed for reuse as soon as the last tilde object having
it as an input is put on the call list� As each tilde object is put on the list	 it
decrements the count that had been obtained by the signal using the 
signal
COUNTOUTPUTS� message	 and when that count reaches zero	 the signal is
freed� The freed signal may be immediately reused by the tilde object which
was the last to use it as an input� thus	 a chain of tilde objects	 each with one
signal input and one signal output	 typically reuses the same signal in place�
This is an important optimization in processors such as the Intel i��� or the
Motorola MC�����	 each of which has a limited internal memory �where one
would try to place the signal vectors��

At the end of the call list building process	 if any tilde objects are not on the
call list	 a signal loop has been detected� If a signal loop is actually desired	 a
delay read�write pair must be used� the minimum delay that may be obtained

��



is one duty cycle period�
In the example of Fig� �	 the DSP call chain is built as follows� The sig and

line objects are found to have no signal inputs and either of the two may start
the call chain� suppose it is the sig � The sig is put on the call list with an
output signal address �call it signal ��� Putting the sig on the call list satis�es
all the signal inlets of osc 	 so it too is put on	 with signal � as both its input
and its output� The right�hand inlet of � is then found to be satis�ed	 but not
the left�hand one	 so the search continues for tilde objects with no signal inputs	
and the line is found� Since signal � is still needed to hold the output of osc� 	
another �signal �� is allocated to hold the output of the line � Now both inlets
of the � are satis�ed and it and the dac are put on the call list	 �nishing it�

In building a signal network	 the user is not obliged to worry about the
order in which the signal inputs of a module become available� for instance	 in
the above example	 the inputs of � may be calculated in either order without
changing the behavior of the network� This is made possible by the fact that
the tilde objects all carry out their DSP actions synchronously� there is only
one DAC clock� In contrast	 the control portions of a patch may be activated in
di�erent ways from di�erent event sources	 so one needs to pay explicit attention
to order�of�execution problems�

Implementation

In the NeXT implementation of MAX	 all real�time processing is o�oaded onto
an Intel i��� coprocessor running the FTS real�time monitor program �Puck�
ette �����	 under the CPOS operating system �Viara ������ Each box de�ned
in MAX gives rise to two objects	 one on the NeXT which is used for edit�
ing	 controlling	 and viewing	 and one on the i��� for doing the computation�
The two must sometimes communicate for control or graphical feedback� this
communication is described in �Puckette ������

At the time of this writing	 the implementation is capable of running ��
voices of the type shown in Fig� � on a single �� MHz� processor	 at a sampling
rate of ���� KHz�� thus	 a six�processor system would be expected to run ��� such
voices� We expect	 perhaps not too optimistically	 that further optimizations
will extend this number to at least ��� ��� per processor��

Possible Extensions

In order to take advantage of the multiprocessing hardware of the IMW	 MAX
on the NeXT has been extended to allow user control over which processor a
given object is to reside on� �The FTS model requires an instance to reside on
a speci�c processor	 and all message handling for that instance is done on that
processor��

To simplify the user interface	 the choice of processor is made for an entire
window at a time� Thus	 the only message paths that may go across proces�

��



sors are the input�output boxes of a sub�patch	 or send�receive pairs� These
two mechanisms have been extended to detect processor boundaries and auto�
matically set up remote�send�remote�receive pairs in FTS as needed� Passing
messages or signals across an FTS processor boundary incurs a delay equal to
the FTS�de�ned latency of the sending processor� A prototype version of MAX
with this extension is running	 but certain issues raised by processor boundaries
have not yet been resolved�

A planned improvement to the DSP call chain building algorithm would
cause it to automatically generate 
sig � objects for signal inlets in cases where
a tilde object has initializing arguments� thus	 
� �� would add one to a signal
and the 
�� could be updated by messages�

As an e�ciency measure	 extensions will be required to allowmultirate signal
processing �so that a vibrato could be calculated at a lower sampling rate than
audio	 for example�	 and to turn subsets of the DSP call list on and o� so that
di�erent synthesis networks can be used at di�erent times without the need to
run them all at once� How these two shortcuts will be speci�ed graphically has
yet to be decided�

No mention has been made here of real�time sound�le access� Tilde classes
to read and write sound�les	 while easy enough to specify	 have so far only been
implemented in non�real�time simulation� It seems realistic to hope for at least
four channels per disk of uncompressed digital audio	 if the disk is otherwise
idle�

The question naturally comes up of an implementation of the tilde classes
for the MacIntosh computer	 either using one of the several Motorola MC������
based cards now on the market	 or else using some future i����based one� This
seems entirely feasible� The major novelty would be that the control code could
no longer run on the external processor �at least	 not without making major
changes in the MacIntosh version of MAX�� Thus	 the tilde classes themselves
would have to manage instance data on both processors and use explicit	 time�
tagged messaging between them� This will result in a higher round�trip time
between messaging and DSP calculation	 as well as complicating the tilde objects
themselves�

Acknowledgements

David Zicarelli has made a huge contribution to the MacIntosh version of MAX	
some of which has made its way to the NeXT version described here as well�
Other contributions of code to MAX were made by Lee Boynton	 Cort Lippe	
Zack Settel	 and David Yadegari� Brave composers who used MAX early in
its development �and thus helped push it forward� include Frederic Durieux	
Michael Jarrell	 and Philippe Manoury	 assisted by Thierry Lancino	 Cort Lippe	
Jan Vandenheede	 and Nicolas Verin� I would also like to thank David Wes�
sel	 without whose encouragement and guidance I would never have tried to
write MAX� And of course Max Mathews	 for whom MAX is named� Not only

��



did he greatly in
uence me in the few months we worked together	 but also
his RTSKED program �Mathews ����� introduced the real�time scheduling ap�
proach that MAX adopts�

References

Anderson	 D� and R� Kuivila� ����� 
A Model of Real�Time Computation for
Computer Music�� Proceedings of the ���� International Computer Music
Conference� San Francisco� Computer Music Association	 pp� ������

Bate	 J� ����� 
UNISON � a Real�Time Interactive System for Digital Sound
Synthesis�� Proceedings of the ���� International Computer Music Con�
ference� San Francisco� Computer Music Association	 pp� ��������

Boynton	 L� et al� ����� 
MIDI�LISP� A LISP�Based Music Programming
Environment for the MacIntosh�� Proceedings of the ���� International
Computer Music Conference� San Francisco� Computer Music Associa�
tion	 pp� ��������

Favreau	 E� et al� ����� 
Software Developments for the �X Real�Time Sys�
tem�� Proceedings of the ���� International Computer Music Conference�
San Francisco� Computer Music Association	 pp� ��������

Helmuth	 M�	 ����� 
PATCHMIX� a C�� X Graphical Interface to Cmix��
Proceedings of the ���� International Computer Music Conference� San
Francisco� Computer Music Association	 pp� ��������

Lindemann	 E� et al� ����� 
The Architecture of the IRCAM Music Worksta�
tion�� Computer Music Journal ������ pp� ������

Lindemann	 E� ����� 
ANIMAL � a Rapid Prototyping Environment for Com�
puter Music Systems�� Computer Music Journal ������ pp� �������

Mathews	 M� and J� Pasquale� ����� 
RTSKED	 a Scheduled Performance
Language for the Crumar General Development System�� Proceedings of
the ���� International Computer Music Conference� San Francisco� Com�
puter Music Association	 p� ����

Minnick	 M� ����� 
A Graphical Editor for Building Unit Generator Patches��
Proceedings of the ���� International Computer Music Conference� San
Francisco� Computer Music Association	 pp� ��������

Opcode	 Inc� ����� 
MAX� �documentation for MacIntosh software�� Palo
Alto� Opcode	 Inc�

Puckette	 M� ����� 
FTS� A Real�time Monitor for Multiprocessor Music
Synthesis�� Computer Music Journal ������ ������

��



Puckette	 M� ����� 
The Patcher�� Proceedings of the ���� International Com�
puter Music Conference� San Francisco� Computer Music Association	 pp�
��������

Viara	 E� ����� 
CPOS� A Real�TimeOperating System for the IRCAMMusic
Workstation�� Computer Music Journal ������ ������

��


