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oftware agenis are our besf
hope during the 1990s for obtain-
ing more power and utility from
personal computers. Agents have
the potential to participate actively
in accomplishing tasks, rather
than serving as passive tools as
do today’s applications. However,
people do not want generic
agents—they want help with their
jobs, their tasks, their goals. Agents
must be flexible enough to be
tailored to each individual. The
most flexible way to tailor a soft-
ware entity is to program it. The
problem is that programming is
too difficult for most people today.
Consider:

* How can ordinary people program
agents? Most people today would say
they cannot.

® How can ordinary people under-
stand what agents are doing? Will
they turn dozens or hundreds of
agents loose in their computers if
they cannot? Or even one?

Unless these problems are solved,
agents will not be widely used.

The End-User Programming
Problem

How can people tell agents what 1o
do? More generally, how can ordi-
nary people, who are not professional
programimers, program computers?
This problem—the “end-user pro-
gramming problem” —is an unsolved
one in computer science. In spite of
many previous attempts to develop
languages for end users, today only a
small percentage of people are able to
program. Why are most people un-
able to do it, in spite of all the at-
tempts to empower them? Is pro-
gramming inherently too difficule?
Or does the fault lie with computer
scientists? Have we developed lan-
guages and approaches best suited to
the skilled practitioner, languages
that take months or years to master?
The authors take the latter view:

computer scientists have not made
programming easy encugh. Consider
the following evidence:

First, observe that most people can
follow a recipe, give directions, make
up stories, imagine situations, plan
trips—mental activities similar to
those involved in programming. It
seems well within the capacity of
humans to construct and understand
concepts like sequences (first add
rice, then add salt), conditionals (if
the water boils too fast, turn down the
heat), and wvariables (double each
quantity to serve eight).

Can we make programing as easy
as giving directions?

Second, notice that most people
can use personal computers. Today,
over 100 million people use them to
write letters and reports, draw pic-
tures, keep budgets, maintain ad-
dress lists, access databases, experi-
ment with financial models, play
games, and so forth. Children as
young as two years old can use a
mouse and paint with programs like
KidPix (a child's painting program, at
one time the world’s best selling ap-
plication) or explore worlds like “The
PlayRoom” (a child’s adventure
game). So computers are not inher-
ently unusable. The key observation
is that most of these applications are
editors: with them, users produce an
artifact by invoking a sequence of ac-
tions and examining their effects.
When the artifact is the way they want
it, they stop.

Can we make programming as
easy as editing?

Let us define the term “end users”
to mean people who use computers
but wheo are not professional pro-
grammers. Such people are typically
skilled in some job function, but most
have never taken a computer course.
They use programs (“applications”)
written by other people. They cannot
modify these programs unless the
designer explicitly built in such modi-
fication, and then the modification is
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typically limited to setting prefer-
ences. Perhaps 99% of the 100 million
computer users can be classified as
end users. If we could empower these
people to program computers, the
impact would be enormous.

In the past two decades there have
been numerous attempts to develop a
language for end users [21]: Basic,
Logo, Smalltalk, Pascal, HyperTalk,
Boxer [7], Playground [8], etc. All
have made progress in expanding the
number of people who can program.
Yet as a percentage of computer
users, this number is still abysmally
small. Consider children trying to
learn programming. When they are
in class, most children will learn any-
thing. But do they continue to pro-
gram after the class ends? Today pro-
gramming classes are characterized
by the “whew, I'm glad that’s over!”
syndrome. As soon as children do not
have to do it anymore, they go on to
something that's actually fun.

We hypothesize that fewer than
10% of the children who are taught
programming continue to program
after the class ends. This is based on
personal experience and observation.
Surprisingly there are no published
studies on this issue, to our best
knowledge. Nevertheless, we expect
that most readers will agree with this
hypothesis. Soloway (private commu-
nication) states “My guess is that the
number . . . is less than 1%!!! Who in
their right mind would use those lan-
guages—any of them—after a
class?”! Single-digit percentiles indi-
cate that the end-user programming
problem has not yet been solved.

As a step toward solving this prob-
lem, we will describe a prototype sys-
tem designed to allow children to
program agents in the context of sim-
ulated microworlds. Our approach is
to apply the good user interface (UI)
principles  developed during the
1980s for personal computer applica-
tions to the process of programming.
The key idea is to combine two pow-
erful techniques—graphical rewrite
rules and programming by demon-
stration. The combination appears to
provide a major improvement in end
users’ ability to program agents.

"Private communication.

Good User Interface Principles
for Programming Environments
Why have previous attempts to de-
velop a usable EUP language not
been more successful? The authors
themselves have developed lan-
guages for end users, none of which
were successful. When people are not
making progress on a problem, it is
often because they are asking the
wrong question. We decided that the
question is not: what language can we
invent that will be easier for people to
use? The question is: should we be
using a language at all? This was the
starting point for the work described
here. We have come to the conclusion
that since all previous languages have
been unsuccessful by the criterion
described here, language itself is the
problem. It does not matter what the
syntax is. Learning another language
is difficult for most people. The solu-
tion 1s to get rid of the programming
language.

But if we do, what do we use in-
stead? The answer is all around us in
the form of personal computers.
Today, all successful personal com-
puter applications and many work-
station applications follow certain
human-computer interface principles
that were developed in the late 19705
[20] and codified during the 1980s
[1]. The most common embodiment
of these principles is the so-called
graphical user interface (GUI) con-
sisting of windows, menus, icons, the
mouse, and so forth. The principles
that make this interface work can and
should guide computer scientists in
attacking the end-user programming
problem. We will briefly describe a
few of these principles. However, we
want to emphasize that we did not
invent these principles in the work
reported here. We are merely apply-
ing them to programming. Further-
more, the description here is by no
means complete; many books have
been written on these principles. See,
for example, [2, 11, 12].

The following are the most impor-
tant principles for solving the end-
user programming problem.

e Visibility: Make everything relevant
to people’s operation of a computer
system visible on the display screen.
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This is the single most important Ul
principle. People have an easier time
understanding what is going on and
what to do next if information is visi-
ble than if it is kept internal to the
program and hidden from users.
Without visibility it is almost impossi-
ble to achieve an easy-to-use inter-
face. Visibility has a couple of related
principles:

Interactive vs. batch: Establish a
cause-effect relationship  between
user actions and system semantics.
When users do something, show the
effects immediately. Systems that do
not are confusing.

Modeless vs. modal: A “mode” is a
state of a system in which user actions
are interpreted differently than they
would be ordinarily. Systems get in
trouble when either (a) they have
many modes or (b) their modes are
invisible. Both confuse people, lead-
ing to (usually unpleasant) surprises
at the results of actions.

Coping and modifying vs. creating

[from scratch: Allow people to copy and

modify existing items in a system as a
way to create new ones. It is often eas-
ier to start with something that works
and figure out how to modify it than
to create the same thing from scratch.
Revealingly, this is the way most pro-
fessional programmers work.

Seeing and pointing vs. remembering
and typing: Allow users to point to
entities on the display screen with
a pointing device, instead of mak-
ing them describe the entities by
typing text. It is the foundation for
the popular concept of “direct ma-
nipulation.”

Concrete vs. abstract: Make the enu-
ties presented to users concrete. Peo-
ple have an easier time with the con-
crete than with abstract.

Familiar user’s conceptual model: Cast
the concepts in a system into terms
the user can understand. When faced
with a new situation, people try to
apply their existing knowledge to
understand it. This is the inspiration
for the use of metaphor in computer
interfaces, especially the so-called
desktop metaphor invented for the
Xerox Star by [20].

Minimum translation distance: One
principle of utmost importance for



programming environments but not
so much for other applications was
proposed by Sloman [18]: minimize
the conceptual distance between peo-
ple’s mental representations of con-
cepts and the representations that the
computer will accept. In our opinion,
the failure to do so is the single
biggest reason that languages de-
signed for children such as Logo and
Smalltalk have not attained wider
use. Time and again we have watched
children try to accomplish simple
programming tasks such as making a
fish swim away from a shark, only to
be frustrated by the difficulty in hav-
ing to deal with coordinate systems
and vectors. The most articulate rep-
resentations are the ones that mini-
mize this translaton
course this is also a principle of good
program design: create data struc-
tures and operations that are close to
those in the problem domain.

In summary, the GUI eliminated
command lines by introducing visual
representations for concepts and al-
lowing people to directly manipulate
those representations. It has empow-
ered millions of people to use com-
puters. Today, all successtul editors
on personal computers follow this
approach. But most programming
environments do not. This is the rea-
son most people have an easier time
editing than programming.

Actually, some programming sys-
tems have adopted an editing inter-
face, and they are beginning to
broaden the community of program-
mers. Spreadsheets, the most widely
used programming technology, have

done this for years. The popularity of

some user interface management sys-
tems with their “drag-and-drop™ in-
terface builders is a result of their al-
direct
interface elements. Similarly, most
people can construct buttons and
fields in HyperCard, which has an
editing feel, but few of those same
people can program in HyperTalk.

There are a few brilliant examples
of programming systems that have
applied ail of these principles. Our
favorite is Bill Budge's video game
for personal computers called “The
Pinball Construction Set.” It allows
people to program pinball games by

lowing

distance. Of

manipulation  of

directly editing the layouts, ie., by
dragging and dropping pinball ele-
ments such as flippers and bumpers.
The elements begin functioning as
soon as they are dropped into place.
Everyone can create pinball games
this way. We call this “programming
by direct manipulation,” and when
done well, it is wondertfully successtul.
The problem with “The Pinball Con-
struction Set” is that you can only
program pinball games with it. The
challenge is to increase the generality
without losing the ease of use.

Simulations

The end-user programming problem
in its full generality is a tough one. It
has resisted solution for over two de-
cades. So we decided to attack it in a
domain that is more general than
“The Pinball Construction Set” but
more restricted than general pro-
gramming, the domain of symbolic
simulations. A symbolic (as opposed
to numeric) simulation is a computer-

controlled microworld made up of

individual objects (agents) which
move around a game board interact-
ing with one another. We chose as
our target audience children in the
age range of 5-18 years old.

Why simulations? They are a pow-
erful tool for education. Simulations
encourage unstructured exploratory
learning. They allow children to con-
struct things, supporting the construc-
tivist approach to education. Alan
Kay contends “We build things not

just to have them, but to learn about

Ll

them.” He quotes the philosopher
Cesare Pavese, "To know the world,
one must construct it.” Scardamalia
[17] argues that children learn best
when constructing things. They enter
Vygotsky’s “zone of proximal devel-
opment.” Simulations such as Sim-
City and SimEarth allow children (of
all ages) to construct unique micro-
worlds, giving them a sense of owner-
ship in their creations. They can ob-
serve and modify and experiment
with these microworlds. Children are
the “gods” of their worlds. This pride
of ownership and feeling of power
are compelling qualities that motivate
even professional programmers.
However, most simulations today
do not permit users to modify their

tundamental behaviors and assump-
tions. For example, one cannot alter
the fact that if one puts in a railroad
in SimCity, the pollution problems go
away—not exactly a realistic conse-
quence. This inflexibility is the reason
that most school teachers do not use
SimCity as a teaching tool, even if
they are studying city building. It
does not model what they want to
communicate. Simulations that do
allow fundamental modifiability, such
as numeric simulations built with
Stella, require extensive program-
ming skills. Few children or teachers
can or want to do it

What is needed is a way for chil-
dren without programming knowl-
edge to have more control over the
behavior of simulations. What is also
needed is a way for teachers to tailor
simulations to support their curricu-
lum goals. KidSim™ provides a way
to do both.

KidSim

KidSim (“Kids' Simulations”) is a tool
kit that allows children to build sym-
bolic simulations. Kids can modify the
programming of existing simulation
objects and define new ones from
scratch. KidSim simulations consist
of:

¢ a game board divided into discrete
spaces, like a checkerboard

® a clock whose time is divided into
discrete ticks

® one or more
(agents)

® a copy box which is the source of new
simulation objects

® o rule edifor where rules are defined
and modified

e various other elements

simulation  objects

In this article we will focus on simula-
tion objects and the way kids pro-
gram them.

The game board represents the
simulation microworld. It is the envi-
ronment in which simulation objects
interact with one another. Dividing
it into discrete squares makes it
easier for kids to communicate
their intentions to the computer. The
game board in Figure 1 displays a
monkey in a simple jungle scene. We
will use this simulation throughout
this article.
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Figure 1. AKidSim jungle simulation
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The clock starts and stops a simula-
tion running. Dividing time mnto dis-
crete ticks makes 1t easy for kids 1o
control their simulations. The clock
provides both fine-grain control over
time (single stepping) and the ability
to run time backward. Running the
clock backward undoes everything
that happened during the previous
clock tick, encouraging kids to exper-
iment and take chances. If something
goes wrong, they can just back up the
clock to before that point.

The copy box is a container for
simulation objects that automatically
makes copies of things inside ir.
Whenever a child drags an object out
of the copy box, the system clones the
object and puts the orginal back.

This provides an infinite source of

new objects. Kids can place their own
objects in the copy box, allowing
them to infinitely duplicate their own
objects as well.

Agents In KidSim

Let us define an agent as a persistent
software entity dedicated to a specific
purpose. “Persistent” distinguishes
agents from subroutines; agents have
their own ideas about how to accom-
plish tasks, their own agendas. “Spe-
cific purpose” distinguishes them
from entire multifunction applica-
tions; agents are typically much
smaller. (As demonstrated by the art-
cles in this issue, this is by no means a
universally accepted definition, but it
is the one we will use here.)

In KidSim, the active objects in
simulations are agents (see Figure 2).
During each clock tick, agents move
around on the game board interact-
ing with one another. Metaphorically
they are characters in a microworld,
and we will use the terms “character”
and “agent” interchangeably. KidSim
agents have three attributes:
® appearance: Kids can draw
own appearances for agents, encour-
aging metaphorical thinking.
® properties: Kids can define their own
data and characteristics for agents.
Typical ones for a monkey character
might be “name,” “age,” “height,”
“weight,” “sex,” “hunger,” “fear,”
and "climbing ability.” Properties are
name-values pairs. They serve the
same function in KidSim that vari-

their

ables do in wraditional programming
languages. Properties have no inher-

ent meaning to KidSim. They have
meaning only if kids use them in
rules.
® yules: Kids can define rules of be-
havior for agents. The set of rules for
an agent constitutes its program.
Thus KidSim agents are full ob-
jects in the object-oriented program-
ming sense. They have state (proper-
ties), (rules), and an
appearance. While there is no inheri-
tance between agents, there 1s a way
to give every agent the same rule.
KidSim agents are similar to those
in Logo Microworlds. The difference
is in how they are programmed. In
Logo Microworlds, kids program ob-

behavior

jects with Logo. In KidSim, kids con-
struct “graphical rewrite rules.”

In KidSim, kids usually start with
several predefined characters in vari-
ous microworlds. The kids can play
with these microworlds immediately,
as with ordinary video games. This
gets them involved. After a while,
they typically want something to
work differently. At this point KidSim
differs from video games. Kids can
modify the way the characters work,
by changing their programming.
Pedagogically this is an important dif-
ference, because the act of changing
things forces kids to think. They have
to decide what to change, how to
change it, and how to fix it when their
changes do not work. At every step
their brains are engaged. In fact, we
believe that any video game can be
turned inte a learning experience by
allowing kids to modify it.

We also give kids a “lump of clay”
from which they can create new char-
acters, The
lump of clay is sufficient to build ev-
erything. Typically kids begin by
modifying the predefined characters,
but they quickly move on to defining
totally new ones.

indeed entre worlds.

Languageless Programming,
the Key ldea

The main innovation in KidSim is the
way in which children specify the
behavior of agents. KidSim does it
without a programming language.
Instead KidSim combines two power-
ful ideas:
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1. graphical rewrite rules
2. programming by demonstration

Each has been tried before in isola-
tion by various researchers, including
the present authors, and each has
been found insufficient by itself to
enable people to program comput-
ers. This is the first time they have
been combined in a general pro-
gramming environment. We call the
result “languageless programming.”

A graphical rewrite rule is a trans-
formation of a region of the game
board from one state to another. (See
Figure 3.) Tt consists of two parts: a
“before™ part and an “after” part.
Each part is a small scene that might
occur during the running of the sim-
ulation. A rule is said to match if its
“before” part is the same as some
area of the game board at some mo-
ment in time. When a rule matches,
KidSim transforms the region of the
game board that matched to the
scene in the “after” part of the rule.
(Actually a recorded program is exe-
cuted, as described later.)

Rewrite rules or “if-then rules” or
“production systems’ are well known
in artificial intelligence [5, 14, 16].
They form the control structure for
expert systems, of which OPS5 from
Carnegie-Mellon is an example [13].
Rule-based systems have some mar-
velous characteristics. Since rules are
independent of one another, it is pos-
sible to add a rule to an existing sys-
tem without affecting the rules that
are already there. This assumes the
added rule is specific enough so that
it does not override other rules and
that the system is smart enough to
factor the rule into the correct order.
The Lisp70 production system auto-
matically factored rules using an algo-
rithm called “specificity” in which the
more specific rules were tried before
the more general ones, which worked
well in most cases [22]. Furthermore,
in rule-based systems it is easy to un-
derstand and debug each rule by -
self, without having to be concerned
with the other rules. Of course a good
rule tracer and stepper are essential,
as in any programming language.

Graphical rewrite rules are two-
dimensional versions of rewrite rules.
They, too, have been applied to the
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Figure 2. Examples of agents

Figure 3. A graphical rewrite rule
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end-user programming problem by
several researchers [9,15]. (See also
A. C. Kay, Tableau, 1988, unpub-
lished.) While they work well for sim-
ple tasks, they have encountered two
problems that have limited their util-
ity for complex tasks: (a) The “rule-
generality” problem—pictures, being
inherently literal, are difficult to gen-
eralize to apply to multiple situations;
and (b) The ‘“rule-semantics”
problem—it is difficult to specify how
the computer is to perform the trans-
formation from the left to the right
side of a rule.

Some systems have applied Al
techniques to try to infer the transfor-
mation, but to date no one has devel-
oped a general method for doing so.
Additionally, graphical rewrite rules
suffer from a problem that all rule-
based systems have, graphical or not:
(c) The “rule-sequencing” problem—
it is difficult to specify a series of
transformations, i.e., do rule A then
rule B then rule C, since rules by defi-
nition are independent of each other.
KidSim’s graphical rewrite rules solve
the first problem by abstraction and
the second by programming by dem-
onstration. We have not yet ad-
dressed the third problem, sequenc-
ing.

Children may generalize KidSim's
graphical rewrite rules in two ways:

e Picture abstraction: Kids may select
an object in the “before” part of a
rule, and a pop-up menu will appear
listing possible generalizations of that
object (Figure 4). In this example, a
child has clicked on a rock in the “be-
fore” (left) part of a rule. Its list of
possible  generalizations appears:
“this particular rock (grey rock 7),
any grey rock, any rock, or any ob-
ject.” The child may specify that the
rule is to apply to any of these types of
objects.

® Property abstraction: Kids can specify
tests on the properties of the objects
in the “before” part of a rule. These
constitute additional tests (conjuncts)
that must be satisfied for the rule to
match. For example, suppose a child
wants to restrict a rule in which a
monkey jumps over rocks to rocks
that are less than the monkey’s
height. Adding the property test in

Figure 5 to the rule does this. If a
child buttons down on the < symbol,
a pop-up menu of operators appears
showing the allowable tests on nu-

meric  properties (< = = # = >),
Text properties have other operators.
A child may choose any operator.

Now we can fully define a graphi-
cal rewrite rule in KidSim:

A graphical rewrite rule consists of a
(possibly generalized) visual image
and zero or more property tests. In
order for a rule to match, its visual
image must conform to a situation on
the game board, and all of its prop-
erty tests must evaluate to true.

Programming by
Demonstration

Programming by demonstration is a
technique in which the user puts a
system in “record mode,” then con-
tinues to operate the system in the
ordinary way, and the system records
the user’s actions in an executable
program (4, 19]. The key characteris-
tic is that the user interacts with the system
Just as if recording were not happening.
Users do not have to do anything dif-
ferently or learn anything additional.
Halbert [10] calls this “programming
a software system in its own user in-
terface,” a phrase that accurately ex-
presses the user’s experience.

There have been a number of pro-
gramming by demonstration (PBD)
systems prior to KidSim. The major
ones are described in [3]. These sys-
tems have proved to be exceptionally
easy for people. However, most PBD
systems have suffered from two
deficiencies:

e PBD systems have been experi-
mental, used by small numbers of
people for simple tasks but not by
large numbers of people for complex
tasks. The exceptions are macro re-
corders, which are in wide use, but
they have such a limited ability to
generalize that they are not general-
purpose programming systems. Kid-
Sim will attempt to solve this problem
by delivering a commercially avail-
able, general-purpose programming
product. Itis designed to be powerful
enough to enable children to con-
struct simulations as complicated as
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the game “PacMan.” In fact, our test
for generality is not Turing equiva-
lence, which is easy; it is “PacMan
equivalence.”

e PBD systems do not represent re-
corded programs in a way that users
can understand. We might call this
the “PBD representation problem.”
Often they show programs as scripts.
But it does not work to let people rec-
ord programs in a way they can
handle—by demonstration—and
then turn around and force them to
learn a programming language! Kid-
Sim solves this problem by using
graphical rewrite rules as visual re-
minders for recorded actions.

An Example of Programming in
KidSim

Suppose a child wants to teach a
monkey how to jump over rocks.
Here are the steps involved:

1. The child sets up the simulation
situation which he or she wants to af-
fect. In this example, the child places
the monkey next to a rock. KidSim
allows children to define rules only
when the actual simulation situation
exists. This makes defining rules a



Figure 6. Defining

the context
forarule

concrete process, reducing the need
to visualize simulation states ab-
stractly. The child can be sure the
rule will work at least for this one ex-
ample, and the child can generalize it
to a wider class of situations later.

2. The child specifies the region of
the game board with which the rule is
to deal (Figure 6). This is the region
that will be pattern-matched against
the game board when the simulation
runs. The child specifies this region
by direct manipulation, by dragging
the border of a “spotlight” which
appears during recording. The “be-
fore” and “after” pictures in the rule
copy the “spotlight’s” area.

3. Initially the “before” and
“after” parts of rule are identical, i.e.,
each rule begins as an identity trans-
formation. The child defines the rule
semantics by editing the “after” pic-
ture to produce a new simulation
state. (See Figure 7.) First the child
places the cursor (a small hand) over
the monkey and drags it to the square
above the rock (Figure 8). Then the
child drags it to the square to the
right of the rock (Figure 9). Done.
That's all there is to it. Nowhere did
the child type “begin ... end,” “if

Figure 7. Defining a rule by demonstration

Figure 8. Dragging the monkey above the rock
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then . .. else,” semicolons, or

other language syntax. Yet the effect
when executed is that the monkey

jumps over the rock. The child has
programmed the monkey. This is the

essence of programming in KidSim:
programming by direct manipulation
editing.

Suppose now that the child wants

Figure 9. Dragging the monkey to the right of the rock

to restrict the monkey to climbing
over rocks that are up to twice its
height (monkeys being good climb-
ers) but no higher. Suppose the mon-
% key's height is 60, and the height of
the current rock 1s 70. Here's how 1o
do it

4. The child clicks on the triangle
below the left side of the rule (Figure

10). This displays a box in which
property tests may be defined. Kid-
! Sim always provides an empty test.

N 5. The child drags the height

property of the rock into the left side
of the test.

6. Since the right side of the test is
to contain a calculation, the child dis-
plays the KidSim calculator (Figure
I1). The child drags the monkey’s
height property into the calculator

Figure 10. Defining a property test J 120

=)

)

height Calculation |
i B

Figure 11. KidSim calculator

display, pushes the multiplication
button and the 2 button, then pushes
the = button; 120 appears in the dis-
play. The child drags this value into
the right side of the property test.
I'he rule is shown in Figure 12. Since

70 (the height of the rock) is less than

120 (twice the monkev's height), this
Figure 12. Checking if the rock is less than twice the monkey's height rock passes the test. However, other
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rocks the monkey encounters in its
travels may be higher than 120, so
this rule would not match, and the
monkey could not climb over those
rocks.

7. Finally the child closes the rule
editor window. A miniature image
(Figure 13) of the rule is placed at the
top of the monkey’s list of rules. This
image visually suggests its behavior.

Figure 13. Aminiature image

KidSim can display (upon request)
the program that was built as the
child edited the right side of the rule
(Figure 14).

Now we can define what it means
to execute a graphical rewrite rule:
when a graphical rewrite rule
matches, KidSim executes the pro-
gram that was recorded by demon-
stration for it.

The iconic-symbolic representa-
tion for the program is an attempt to
be close to what children are thinking
when they edit—the “minimum
translation distance” principle. How-
ever, we feel children will rarely want
to see this representation, and we
make no particular claims for it. It
will usually be enough for kids to look
at the miniature images of rules to
understand what they do. We have
found that children can look at doz-
ens of graphical rewrite rules and
(a) tell them apart and (b) explain
what they do, even rules written by
other children (see Figure 15). Here
is where combining graphical rewrite
rules and programming by demon-
stration result in a system that is
stronger than either. Graphical re-
write rules solve the PBD representa-
tion problem, and programming by
demonstration solves the rule-seman-
tics problem.

A problem with rule-based systems
is that rule order is crucial and often
hard to get right. The problem grows
with the number of rules. This prob-
lem is somewhat mitigated in KidSim
because its rules are quite high-level.
We have found that we can accom-
plish interesting tasks in relatively few

Move g from gH to B

Move f from B to §H

Figure 14. Pictorial display of recorded actions
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rules. For example, an optimized
strategy for playing the game “Mas-
terMind” requires only about 15
rules in  KidSim. Rules can be
grouped also into subroutines,
thereby forming larger conceptual
chunks. Nevertheless, this problem
could become serious when the num-
ber of rules gets large. We may adopt
a strategy like Lisp70’s in which rules
are automatically factored into a dis-
crimination tree by specificity, which
removes the need for children to
manually order the rules.

Of course, graphical rewrite rules
really do constitute a programming
language. The language has a syntax:
left side — right side, and it has an

move right

bounce off a rock to right

bounce off a rock to left

jump off a cliff

Buttons

Figure 15. The rules foramon-
key. (The annotations are not
part of the actual display.)

ordering of “statements”: top to bot-
tom. Nevertheless, we feel justified in
calling KidSim “languageless pro-
gramming” because of the complete
absence of a traditional linguistic syn-
tax such as if-then-else, and because
the left and right sides of rules are
images of the game board, not ab-
stract representations of it. Further-
more, KidSim follows all of the Ul
principles listed here, making it feel
more like direct manipulation editing
than programming.
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Kid Tests of KidSim

Over the past two years we have
formed a close association with fifth-
grade classrooms in two elementary
schools. As part of other projects,
Apple Computer had endowed both
schools with numerous Macintosh
computers. Each of the classrooms
has about 15 computers, one for
every two children. While this ratio 1s
not representative of schools in gen-
eral, it did provide a good laboratory
for experimenting with ways to im-
prove education through technology.

This association with the schools
has been essential in the development
of KidSim. If you want to design a
program for children, then children
must participate in the design. Feed-
back from the students has caused us
to change the design of KidSim sev-
eral times. Each time we went back to
the children for their reaction to the
new design, which often caused us to
revise it further. An example was our
approach to specifying arithmetic
expressions on property values, such
as computing twice the monkey’s
height. We invented several clever
(we thought) notations, most having a
data flow flavor. The kids repeatedly
said they could not understand them,
much less write them. Finally, we
went back to the principle of direct
manipulation. We introduced a calcu-

lator to allow interactive creation of

expressions, rather than forcing kids
to type them statically. Children drag
property values to the calculator and
push buttons to operate on them,
much as they would with a physical
calculator. The calculator metaphor
obeys almost all of the good Ul prin-
ciples mentioned earlier—concrete,
interactive, direct manipulation, see-
ing and pointing, familiar conceptual
model, and modeless. We found that
all the children could use it. (A calcu-
lator “tape” is available for displaying
the steps should a child want to see
them.)

Having a working prototype is also
essential in getting feedback from stu-
dents. They are able to respond more
easily when they can try out a design
rather than having to imagine how it
might work. But even before we got a
prototype working, we tested the
ability of children to write graphical

rewrite rules via “Post-it Notes pro-
gramming,” in which they wrote
rules on note pads and then acted out
their “programs.” Among the 30 fifth
graders (10-year-olds) we tested, both
boys and girls, none had any trouble
writing rules. Furthermore, they re-
sponded enthusiastically to the con-
cept. When we gave them new prob-
lems, they raced back to their desks,
scribbled out a new rule or two, then
raced back to us and demanded *“Test
us now.” There was no writer’s block
as is often observed with program-
ming languages, in which kids do not
know how to proceed. This experi-
ence has been repeated with the com-
puterized rules.

These efforts do not constitute a
formal test of KidSim. Nevertheless,
the results are so positive that we are
encouraged to think the KidSim ap-
proach has promise. At the time of
this writing, we are planning to initi-
ate a structured test on 60 children in
the two fifth-grade classrooms. The
teachers in these classrooms have
developed a curriculum around a
particular simulation based on [6].

summary
KidSim is a tool kit that makes it easy
for children and nonprogramming
adults to construct and modify simu-
lations by programming their behav-
ior. It takes a new approach toward
programming by getting rid of the
traditional programming language
syntax. Drawing on the lessons
learned from personal computer user
interfaces, KidSim combines two
powerful ideas—graphical
rules and programming by demon-
stration. The result appears to solve
the end-user programming problem
for some types of simulations.
Ultimately we want to extend Kid-
Sim to adult programming tasks
(AdultSim?). At the moment we do
not know how to do this, and we sus-
pect that the effort required will be
nontrivial. However, we do feel that
we can characterize the result: all suc-
cessful end-user programming sys-
tems for adults (or kids) will follow
the principles we have described.

rewrite
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