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Figure 1: The graphics debugging engine presented in this paper makes it possible to capture, manipulate and visualize a wide range of data
from the graphics pipeline without making changes to the underlying application.

Abstract

We present a new, unified approach to debugging graphics soft-
ware. We propose a representation of all graphics state over the
course of program execution as a relational database, and produce
a query-based framework for extracting, manipulating, and visual-
izing data from all stages of the graphics pipeline. Using an SQL-
based query language, the programmer can establish functional re-
lationships among all the data, linking OpenGL state to primitives
to vertices to fragments to pixels. Based on the Chromium library,
our approach requires no modification to or recompilation of the
program to be debugged, and forms a superset of many existing
techniques for debugging graphics software.
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1 Introduction

The graphics pipeline embodied by today’s 3D rendering platforms
has a complex nature that defies classification. From a high level,
it appears as a coarse-grained pipeline. Yet on closer examination,

it seems at once both a streaming architecture and a SIMD archi-
tecture. Programming the various stages of this pipeline to pro-
duce some desired rendering output resembles the orchestration of
a symphonic masterpiece, to be conducted at run-time by code on
the CPU.

As daunting as writing such modern graphics software is, however,
it pales in comparison to the task of debugging that software. The
tried-and-true, standard debugging tools only give access to vari-
ables on the CPU, losing track of data once it passes into the graph-
ics API. In general, tracking the data beyond that point requires
the programmer to make extensive modifications to the code on the
CPU as well as on the programmable vertex and fragment proces-
sors. Such debugging techniques are akin to the classic approach to
debugging with print statements, except that in this case, it is much
more difficult to extract the variables to be printed, and the data
sizes are considerably larger.

Fortunately, there are several tools that can assist in this task. Some
give access to the OpenGL state, including state variables, log-
ging calls, reporting errors, etc. Others provide means of stepping
through a fragment or vertex program. However, none of these tools
provide a means of debugging the entire pipeline — the data are
scattered across the pipeline with scant relations between.

In this paper, we present a new, comprehensive approach to de-
bugging software on the graphics pipeline. All the data that exists
throughout the graphics pipeline during program execution is rep-
resented in a set of virtual tables. We define a query language based
on SQL to extract and instantiate the desired portions of these ta-
bles, then manipulate them using relational algebra. This provides
a powerful mechanism for not only getting at the data, but for un-
derstanding the relationships among the data. For example, it is
easy in this framework to establish the relationships of primitives
to vertices to fragments to pixels, and one can trace the origins of
particular pixels or examine the legacy of particular primitives. In
some contexts, it is helpful to inspect the output of a query in the
form of a raw table of numbers. In others we find that it is espe-
cially useful to employ visualization techniques to browse the data
in a more intuitive fashion.

A key feature of our approach is that it does not require the pro-
grammer to rewrite any application code, but simply to run the



application using our dynamically-linked, OpenGL replacement li-
brary. Based on the infrastructure of the Chromium library, the
debugger non-invasively intercepts the necessary portions of the
OpenGL command stream. The main application context is guar-
anteed to render exactly as before. Meanwhile, a separate debug-
ging context gathers the requested data, performs relational algebra
operations, and ships the results off for visualization. Thus one
can run the application at interactive rates, navigate to a location
of interest for debugging, and initiate debugging for the graphics
frames that follow. During debugging, the application window con-
tinues to render as expected, but the debugger’s user interface also
provides visualization of the queried data. One can debug a sin-
gle frame of interest, or allow the application’s main loop to keep
running, updating the debugging visualization as it proceeds. The
performance of this process while debugging queries are active is
dependent on the complexity of the particular queries and their vi-
sualization tasks.

This paper makes a number of contributions to the state of the art in
debugging graphics software. We define a mapping of data from all
stages of the graphics pipeline to a set of data tables and a relational
language for selecting from these data and establishing their inter-
relationships. This novel approach provides a rich environment in
which to pose and solve debugging problems. Other graphics de-
bugging solutions, such as OpenGL state access and generation of
RGB images from fragment program data, are a subset of what is
possible with our approach. In this setting, programmers ask them-
selves not if they can get at some particular data or relationship, but
how to do it most effectively. Our language and debugger provide
the necessary tools. We focus here primarily on the core debugging
facilities, what we term the debugging engine. Given this compre-
hensive debugging engine, it is possible to build a variety of more
high-level tools and implement a number of strategies for debug-
ging graphics applications.

2 Related Work

Although trivial programs may be debugged purely by inspection,
most debugging tasks benefit from the extraction of data from the
program execution environment. In some cases, the programmer
may modify the program to extract these data (such as adding
print statements), but it is generally more convenient to use some
more automated debugging environment.

Text-based debuggers, such as dbx [Linton 1990], gdb [Stallman
1989], and CodeView, provide the programmer with interactive ac-
cess to program data during execution. For example, the program-
mer can step through code, examine variables, set breakpoints and
conditional breakpoints, traverse the scopes on the current stack,
etc. Similar debugging methodology has been employed since at
least DEC’s PDP-1 debugger, DDT [MIT 1961]. Graphical de-
buggers and integrated development environments (IDEs), such as
xdbx, xxgdb, DDD [Zeller and Lütkehaus 1996], Saber-C [Kaufer
et al. 1988], Visual Studio, XCode, etc., add graphical user inter-
faces, including widget-based user interaction, more visual repre-
sentations of data structures and programs as graphs, as well as
providing facilities for code development and compilation. These
sorts of debuggers enjoy near-universal adoption, and are excellent
tools for debugging a single thread of program execution.

In general, additional tool support is required to extend this model
to parallel and distributed environments. Debuggers like pdbx,
pgdbg, DDT (by Allinea Software), and TotalView extend this
break/step/continue debugging model to MPI and OpenMP execu-
tion environments for distributed processes and multi-threaded ap-
plications. The programmer is given additional controls to manage

these commands over several processes, and can apply the com-
mands to an individual process or groups of processes. Even so, the
task of managing and interpreting the data becomes increasingly
complex with the addition of parallelism.

To deal with parallelism at massive scales, debugging environments
such as IVE [Friedell et al. 1991] and Prism [Sistare et al. 1992] for
Connection Machines and MPPE for the MasPar provide visualiza-
tions which map processors and their data to colored pixels or other
small glyphs, such as arrows.

It is not surprising that such pixel-based debugging techniques are
common on systems designed for computer graphics. As the com-
mon wisdom goes, “the best way to debug graphics is using graph-
ics.” Given a pixel-based shader program, a programmer redi-
rects some scalar or vector quantity to the location reserved for
the shader’s output color (after scaling and biasing into the valid
color range). A skilled observer can sometimes make inferences
about the data by inspecting the resulting image, or can inspect in-
dividual values in an image viewer. In PixelFlow’s pfman language,
the compiler could instrument a fragment shader to dump an image
for any single lvalue in the program. This was done by setting a
uniform parameter to an instruction number, thus avoiding an ex-
pensive recompilation process [Olano 2005]. Image-based debug-
ging of fragment shaders are similarly common for SGI’s OpenGL
Shader and for RenderMan [Stephenson 2000] (which can dump
many variables at once because it is a pure software renderer).

There are a number of debuggers for fragment programs on to-
day’s PC graphics hardware with a range of capabilities [Purcell
2004]. Imdebug [Baxter 2002] provides printf-style statements that
the programmer can add to code to bring up the shader output in
an image window. Shadesmith [Purcell and Sen 2003] allows step-
ping through fragment programs to inspect individual variables as
images. Apple’s OpenGL Shader Builder allows debugging of in-
dividual shaders in a stand-alone fashion, but not in the context of
the real application program. Microsoft’s Shader Debugger Tool
operates using a software rasterizer, providing access to vertex and
fragment data for DirectX Programs. The visualization aspects of
these tools are generally restricted to the fragment program portion
of the graphics pipeline.

The ATI RenderMonkey and NVIDIA FX Composer tools’ ap-
proach to shader development sidestep the issue of debugging by
using a GUI to build a a scene out of a wide variety of basic graph-
ics “building blocks”. Because this approach allows shaders to be
changed on the fly, the basic challenges of shader debugging are
avoided.

The debuggers above can be supplemented with additional tools
that instrument the OpenGL API calls. Tools like Microsoft’s
PiX [Microsoft 2005], gDEBugger [Graphics Remedy 2005],
GLIntercept [Trebilco 2004], and GLSurveyor [Gould 2005] track
and log all graphics API calls, report error conditions, and let the
programmer look at the state associated with contexts while walk-
ing through the application.

While these debugging tools perform useful functions and can cer-
tainly increase the programmer’s ability to investigate a variety of
bugs that occur in graphics applications, the data they report are
difficult to relate to one another. At the vertex and fragment level,
they also tend to follow the myopic approach of standard debug-
gers, presenting data in a program-counter-oriented fashion. (For a
qualitative comparison of tools, see Figure 2.)

There are a several alternative debugging concepts from outside the
graphics domain that have some of the characteristics we are seek-
ing. The first is the concept of omniscient debugging [Lewis 2003],
which includes a debugger that captures all program state over the



Application State Texture V. Shader F. Shader Postprocessing
Tool Integration Debugging Debugging Debugging Debugging Profiling via

DirectX9/Microsoft PiX Yes Yes Yes Emulation Emulation Yes GUI
NVPerf Yes No No No No Yes None

PixelFlow Yes No No No Yes No Image files
Apple GL Tools Yes Yes Yes No No Yes GUI
gDEBugger(etc) Yes Yes Varies No No Yes GUI

RenderMonkey/FX Composer No No No No No No GUI and shader editor
This Paper Yes Yes Yes Yes Yes Yes Graphics Query Language

Figure 2: There is considerable variety in currently available graphics development tools. Sometimes the tool integrates with unmodified
applications. Most tools allow examination of textual state, e.g. viewport coordinates. A limited number of these tools also allow textures
to be viewed. Line-by-line debugging of vertex and fragment shaders is becoming more common. Some tools, like RenderMonkey and FX
Composer, avoid the debugging paradigm entirely by allowing on-the-fly reloading of shader programs. Performance profiling is the most
universally supported feature of graphics tools. However, the method used to study the data obtained by all of these tools is universally
limited: some tools to perform analysis using a GUI while others output text or image files.

entire program execution. This idea is primarily used to allow the
programmer to move backward as well as forward in time over the
program execution during the debugging process. Another useful
concept is query-based debugging [Lencevicius et al. 1997]. Lence-
vicius et al. propose a debugging framework in which queries are
used to to search out data with specific properties and relationships
from amongst the state of a standard CPU-based program.

These concepts are relevant to our debugging engine for the graph-
ics pipeline. We do not explicitly capture all data as in the omni-
scient debugging technique, instead organizing the data into virtual
tables that are then built only in response to user input. The user
interacts with these tables using relational algebra queries, provid-
ing a uniform mechanism to control the capturing, organization and
data-manipulation processes that are involved in typical debugging
sessions. This approach is tightly coupled with the use of visual-
ization techniques wherever appropriate, for example mapping data
elements to pixels to help debugging scalar quantities. The use of
relational algebra allows a simple set of visualization modules to be
extended to solve a variety of debugging and problems. While vi-
sualization has been applied to the debugging of graphics software
many times over the years, it has not been applied in such a general
manner to data extracted from inside the graphics pipeline itself.

3 Query-based Approach

The standard approach to debugging a program by sequentially fol-
lowing the progress of the CPU’s program counter over time has
been in use since at least 1961 [MIT 1961]. Although this tech-
nique works reasonably well for tracing programs on a single CPU
or even multiple CPUs, it is more problematic for debugging the
entire graphics pipeline. In particular, consider the flow of data
elements from the vertex processing stage, through the rasteriza-
tion, and to the fragment processing stage. For triangle primitives,
there is a three-to-one relationship of data elements going from the
vertex processor to the rasterizer, and then there is a one-to-many
relationship from the rasterizer to the fragment processor. It is hard
to conceive an effective linear time sequence to follow data from
the start of the pipeline to the end.

Consider instead a model where individual graphics API commands
contribute new rows to an organized relational database. Some ta-
bles track the OpenGL state while others track triangles, vertices
and fragments created in the pipeline. Using standard relational op-
erators we can not only restrict our query to specific parts of the
database but also study the relationships among the data that are
often lost in standard debugging approaches. This working model
proves to be a powerful tool for examining the graphics pipeline.

Table Primary Foreign
Name Key Keys Description
App stateID Application stack and variables
GL stateID OpenGL state

Prims primID vertID [0,1,2,...] Maps triangles to vertices
Verts vertID Vertex shader inputs

SVerts vertID Vertex shader outputs
Frags xy stateID, primID Fragment shader inputs

SFrags xy stateID, primID Shaded fragments, pre-culling
FB xy stateID, primID The frame buffer

Figure 3: Virtual data tables and their primary and foreign keys
used to model the OpenGL pipeline.

3.1 State Tables

We represent data in the graphics pipeline as a set of virtual state
tables. There is a separate table for each logical part of the graphics
pipeline, starting with the application point and terminating with
the frame buffer. Generally speaking, each column of a table rep-
resents some state variable, and each row represents a new point
in time. So, for example, there is a row for each OpenGL call in
the GL table, a row for each vertex in the Verts table, and a row
for each fragment in the Frags table. Columns of the GL table
are pieces of the OpenGL state, whereas the SVerts (shaded ver-
tices) and SFrags (shaded fragments) tables have columns not only
for the output variables of these stages but also for variables set as
lvalues at each line of a bound vertex or fragment program (and
possibly multiple iterations of these). Clearly, these tables can get
quite enormous; our goal will be to populate the rows and columns
of these tables only upon demand.

Primary and foreign keys for each table, shown in Figure 3, make
it possible to perform relational joins between tables, establishing
functional relationships such as vertices to fragments. These keys
allow, for example, individual pixels to be associated both to an
OpenGL state value that was set when the pixel was created and
to the particular primitive that was rasterized to cover this pixel.
These relationships can be established via the stateID and primID
keys respectively.

As we reach the end of the graphics pipeline, data elements pass
through stencil, alpha, and depth tests, with each stage killing some
fragments. Queries interested in these culling operations can ac-
cess all the columns from SFrags, but with decreasing numbers of
rows. Queries on these tables can be achieved either by implement-
ing separate virtual tables for each culling stage, or more simply by
creating a relational algebra expression to emulate the same func-
tionality on the CPU.



The frame buffer requires careful treatment because it is technically
OpenGL state. As would be expected, the frame buffer contains
individual columns for each buffer attribute — color, depth, sten-
cil and so on. Rows are another matter: every time an OpenGL
call modifies the frame buffer, for example a glDrawPixels call,
a whole new set of pixels becomes available in the frame buffer.
Thus, querying of this table needs to be judicious: querying
throughout a drawing call would yield a new frame buffer after each
triangle, whereas querying at the end of a draw call would give the
buffer state at the end of that call.

Another interesting question regarding the frame buffer is its initial
state. Sometimes it is more useful for a frame buffer query to pro-
vide only the newly-generated pixels while other times a user will
want to watch the frame buffer as it evolves from its initial state.
Both types of outputs can be obtained in our model.

3.2 Specifying Data

In order to access and manipulate these tables, we create the
graphics query language, GQL, basing it on the popular relational
database language SQL. As in SQL, a single command, SELECT,
serves to perform several relational algebra operations: projection,
which filters columns; selection, which filters rows; and join, which
merges rows from one or more tables according to a column rela-
tionship. For example, the following statement selects the normal
vector from line 37 of a fragment program:

SELECT normal:37 FROM SFrags

In practice, the notation is a bit more verbose since you usually want
to name your output for later processing. The following command
is a little more common:

CREATE TABLE normalTable FROM
(SELECT xy, normal:37 FROM SFrags)

This sort of table can then be handed to an RGB or normal visual-
izer to show us the normals computed by our fragment program. Of
course, since this command selected from SFrags, it will obtain all
fragments, not just the forward facing ones. To get rid of most of
these stray pixels, we can add a restriction to the expression:

SELECT xy,normal:37 FROM SFrags
WHERE (normal:37).z > 0

We have found that support for vectors, vector swizzling (shown a
little bit here), and matrices to be critical for GQL’s usability. Such
notational conveniences help maintain clarity in an already verbose
language.

The utility of GQL becomes evident when we start merging data
from different queries. Instead of studying just fragments, we can
figure out which vertex indices contributed to each forward-facing
pixel:

SELECT SFrags.normal:37, Prims.vertID0,
Prims.vertID1, Prims.vertID2

FROM SFrags,Prims
WHERE (normal:37).z > 0) &&

(SFrags.primID == Prims.primID))

From here, a variety of things are possible. For example, we might
join this table with a variable captured from the vertex shader.
While the resulting statements may seem a bit long, they are actu-
ally a fairly compact shorthand for a sweeping set of modifications
to an OpenGL application and its shaders. Making such modifica-
tions by hand may be prohibitively difficult and time-consuming.

Figure 4: Using a WHEN statement to extract a single shark from a
scene of 900 sharks in the Atlantis demo program.

3.3 Selecting Objects

To apply the debugger more selectively in the context of a large ap-
plication with many objects, the user can prepend to a selection
query a WHEN expression, which subsets the OpenGL command
stream and effectively defines which rendered objects should be
captured for debugging (see Figure 4). The WHEN expression can
only access variables from the App and GL tables, since these can
be evaluated without the special handling necessary to extract data
from inside the graphics driver. For example, we may say:

WHEN App.Stack0=="main.cpp:42"
SELECT GL.ModelViewMatrix*Verts.Coord
FROM Verts, GL
WHERE (coord > (0,0,0)) && (coord < (1,1,1))

When the application reaches line 42 in the file main.cpp, which
is presumably a glEnd, glDrawArrays, or glDrawElements call,
we select all vertices inside a unit cube and transform them by the
current modelview matrix. This example demonstrates GQL inte-
grating with an application’s namespace. It is possible in GQL to
access the application’s stack as well as its global variables (via the
App table). This proves useful when integrating with large applica-
tions whose OpenGL output is complex and variable across frames
(due, for example, to view-frustum culling).

The WHEN statement also handles cases where a simple SELECT
statement would otherwise lead to results containing thousands of
identical rows. This can happen in the FB and GL state tables. For
example, if we want to study the OpenGL modelview matrix over a
frame’s duration, we use the following statement:

WHEN CHANGED(GL.ModelViewMatrix)
SELECT App.Stack0,GL.ModelViewMatrix
FROM GL,App

This gives us a list of the different modelview matrices and where
they were set during the course of a frame. Without the CHANGED
operator, we would have captured as many rows as there were
OpenGL calls in the frame, a potentially huge number.



Figure 5: Extracting a single missile object from the BZFlag appli-
cation. BZFlag issues between 300 and 1000 drawing blocks per
frame, depending on the viewing parameters, number of missiles,
and other game state. The ability for WHEN statements to use the
application’s namespace (in this case, the stack) is essential for this
sort of application.

From a design standpoint, the effect of the WHEN clause can be
achieved by ANDing together the WHEN condition and the SELECT
statement’s WHERE clause. While such statements have more-
elegant query trees, evaluating them efficiently at runtime is ex-
tremely difficult. We discuss this problem in Section 4.3.1.

4 Implementation

Building a debugger around GQL involves many different deci-
sions, some algorithmic and some design-oriented. We used the
following design principles to guide our choices in these matters:

1. Recompilation and/or special instrumentation of the applica-
tion should not be required to debug a program.

2. Application output should remain unchanged during the de-
bugging session.

3. The debugging algorithms should not depend on custom hard-
ware or driver modifications. Similarly, the debugging should
take place on the actual target hardware, not in software sim-
ulation.

4. Debugging statements involving fragment and vertex pro-
grams should be issued in the level of language (i.e., high or
low) used by the programmer.

5. The ability to visualize data should be an integral part of the
debugging environment, but should not inhibit data manipu-
lation.

The system resulting from these goals is a compelling demonstra-
tion of the power of a comprehensive debugger for the graphics
pipeline.

4.1 System Overview

Our system uses a conventional debugger model: a graphics ap-
plication is instrumented so that its internal graphics calls can be
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Figure 6: Data flow through the OpenGL debugger library. The
debugger library runs inside the user’s process using fake OpenGL
libraries. An external program then connects to this process to issue
queries and visualize the results.

debugged. To this application process is attached a user interface
process that, in our case, is used both to issue queries and also to
visualize the results.

We use the model pioneered by WireGL [Humphreys et al. 2001]
and later Chromium [Humphreys et al. 2002] to instrument the
graphics application’s rendering calls. By masquerading as an
OpenGL driver we are able to intercept and modify an application’s
drawing commands.

The actual modifications we make to the graphics stream are de-
rived from the user’s GQL expressions. First, the WHEN statements
in the user’s entered queries are used to break the OpenGL com-
mand stream into “chunks” of the stream that either are or are not
of interest. Next, when a query references a column from one
of GQL’s virtual tables, we modify the captured OpenGL chunk
and re-render it to extract the virtual column’s data. The resulting
columns are then handed to a relational algebra engine that evalu-
ates the rest of the GQL query and returns it to the user.

This basic algorithm is modified slightly to prevent interruption of
the output of an existing OpenGL application. A system capable of
evaluating GQL queries without interruption (depicted in Figure 6)
operates in the following way:

1. Two interceptor modules are used to capture OpenGL com-
mands as well as the source code for any shaders used by the
graphics application.

2. The useful parts of the captured OpenGL stream are located
by the WHEN detection unit.

3. The sequences of commands marked as useful by the WHEN
detector are buffered by Stream Capture.

4. This buffer is played once to the application to guarantee un-
modified application output and then handed to the Column
Planner

5. We build a number of Virtual Column Drivers which, when
handed a sequence of OpenGL commands, satisfy requests
for specific columns from GQL’s virtual tables.



6. In the Column Planner we decide which virtual column
drivers to use to satisfy outstanding column requests as well
as the order in which to run them.

7. Satisfied column requests are passed back to the query engine,
which evaluates the remaining query tree and passes it back to
the debugger front-end.

The remainder of this paper reviews the various algorithms and
methods used in these modules. First, we show how to perform
multiple rendering passes on an incoming OpenGL stream without
(a) a significant performance hit and (b) affecting the existing appli-
cation’s output. Next, we discuss how to map GQL, whose domain
is the query tree, onto linear OpenGL rendering passes. Finally, we
will discuss the various virtual column drivers that each execute in
a single pass to extract various types of information from the input
OpenGL stream.

4.2 Low-Level Subsystems

The basic approach of this debugger is to transparently capture
OpenGL commands from the application and, controlled by the
GQL language, render these captured commands multiple times
into a separate but identical OpenGL context. Each pass, controlled
by its virtual column driver, will modify the command stream
slightly in order to capture a particular attribute from the graphics
pipeline.

There are two basic components to our low-level debugging engine
that make this whole process possible. First, there are a pair of in-
terceptor libraries that capture the OpenGL and shader command
streams. Second, there is a system that buffers the OpenGL com-
mands and sets up these virtual OpenGL contexts.

4.2.1 Interceptors

The basis of our system is a pair of fake stub libraries – one that
intercepts OpenGL commands and one that intercepts the high
level source code for the application’s shaders. The Chromium
library [Humphreys et al. 2002] (and thus OpenGL) is a natural
choice for our graphics API interception problem because it re-
quires little modification to be adopted to our goals. Not only does
Chromium provide a standard stream processing framework for a
nearly-complete subset of OpenGL, it provides a number of auxil-
iary tools that turn out to be very useful for our purpose, notably
the state tracker [Igehy et al. 1998] and the display-list manager.
We will discuss how we use these Chromium subsystems in detail
in the next section.

One of the goals for this system is to debug the fragment program
in its high-level (or highest-level) shader language. In other words,
if the user coded a shader in an ARB shader assembly language,
it should be debugged at the assembly level, and so on. Because
GLSL was unstable when development on this system began, we
focused on debugging shaders written in Cg. Although this leads to
some Cg-specific nuances in our approach, there is no fundamental
reason why our approaches cannot be adapted to one of the many
other available shader languages.

Because Cg source code never reaches the OpenGL driver, we
have built a secondary interception library that intercepts NVIDIA’s
CgGL library. The actual structure of our CgGL interceptor mirrors
that of the WireGL and Chromium libraries: we build a shared ob-
ject with identical exports as the regular CgGL library, then place
the library in such a way that the dynamic linker finds our library
rather than the real one.

Making high-level shader debugging work with languages that
compile to an intermediate representation, e.g. Cg, requires ac-
cess to the mapping of high-level symbol names to their interme-
diate counterparts. For example, when Cg compiles to ARB as-
sembly, the identifiers for shader parameters are converted to an
integer-based representation. Because instrumenting a high-level
language often changes this mapping, it is critical for it to be ex-
ported from the shader compiler. In Cg, this data can be obtained
via the cgGetParameterResourceIndex interface.

4.2.2 Stream Capture

One inevitable consequence of using hardware for debugging is
output (and other resource) restrictions. For example, one render
target-worth of data can be filled to capacity by a request for a sin-
gle matrix. This is compounded by the fact that a single GQL query
can result in an arbitrary number of requests for virtual columns.
Although this output restriction problem may fade with time, try-
ing to capture vertex shader variables at the same time as fragment
shader variables is very difficult. As long as these restrictions per-
sist, being able to perform multiple passes over the OpenGL com-
mand stream seems to be the only viable alternative. Such an ap-
proach allows the use of a divide-and-conquer strategy when faced
with queries that cannot be accomplished in a single rendering pass.
The question is, how do we do this in OpenGL?

One approach to this problem is to create one OpenGL context
for every virtual column and then issue replicated OpenGL calls
to each context in round-robin fashion. However, this scales
badly because each OpenGL call ends up triggering an expensive
glMakeCurrent call for every active context.

We have experimented with two ways to achieve multi-pass render-
ing in the OpenGL setting. The first approach, which we call the
stream capture approach, uses Chromium’s display list manager,
which allows arbitrary OpenGL command streams to be very ef-
ficiently stored and replayed from memory. In effect, we use the
GQL WHEN statement to select chunks from the OpenGL command
stream that need multi-pass rendering to be captured. These chunks
are stored in a buffer using the display list manager. For every ren-
dering pass needed by GQL, we replay the display list and then
roll back any state changes made in the captured chunk using the
Chromium state tracker, leaving us with a fresh context ready for a
new rendering pass.

This approach fares well enough for applications that issue their ge-
ometry using immediate-mode calls. Because the calls get packed
into a display-list-like object, an individual capture can contain state
changes in addition to drawing calls. This allows large scenes to be
captured in a single pass. However, proper OpenGL semantics of-
ten dictate that we maintain our own copy of drawn vertex arrays
rather than storing the application’s original pointers. This over-
copying problem can lead to poor drawing performance, especially
for large models.

This leads to the second approach for performing multipass ren-
dering, in which we fulfill all the necessary column requests each
time we encounter a call that actually performs the drawing. This
means that we don’t have to worry about rolling back state changes
other than the frame buffer and also that we do not have to carefully
handle large objects like vertex arrays to guarantee replayability.

A number of graphics-debugging peculiarities limit the perfor-
mance gains of this approach. In some cases, a virtual column
driver will need to rewrite a vertex array to contain extra vertex at-
tributes. This causes us to run into the same over-copying problem
that is at issue with the stream buffering approach. Furthermore,



Verts Table SFrags Table

WhenA

WhenB

QueryB
QueryA

Prims Table

Figure 7: The leaves of GQL expressions form a list of virtual
columns that must be extracted from the OpenGL command stream.
Similarly, the WHEN statements in the GQL query tell which rows
to get for these virtual columns. Efficient evaluation of GQL re-
quires that we use these constraints so that the smallest amount of
the OpenGL stream is buffered and the fewest number of render-
ing passes are then used to extract the data necessary to satisfy the
virtual column requests.

when capturing scenes built out of large numbers of draw calls, this
approach can lead to over-calling of the virtual column driver and
thus large numbers of expensive frame-buffer readbacks. In short,
the stream capture approach, while slow for large geometry, is eas-
ily coded and generic. In contrast, the per-draw-call approach gives
speedups for specific virtual columns, but those costs can be easily
lost to boundary conditions and large scenes. Because the gains of
the per-draw-call approach vary so much from application to appli-
cation, we opt to use the stream buffering approach in our debugger
implementation.

The final (and key) low-level issue for the graphics debugger is con-
text isolation. The debugger must perform its debug rendering into
a secondary slave context that is fully synchronized with the master
application context. The first reason for this is aesthetic: the debug-
ger should not interrupt the application’s rendered output. The sec-
ond reason is unavoidable: certain columns are obtained by reading
pixel data from the framebuffer. The slave context requires a float-
ing point visual to prevent this data from being clamped and quan-
tized to the framebuffer’s depth setting. We accomplish context
isolation using the same state-tracker algorithm used in the stream
buffering system.

4.3 GQL Evaluation

The basic primitives of GQL evaluation, requests for table columns
organized into a tree structure, are difficult to map onto the domain
of the graphics debugger. As illustrated in Figure 7, two funda-
mental problems must be solved. First, we must create a stream
processing unit that can can efficiently turn on and off the stream
buffering subsystem in response to the set of WHEN expressions in
the active GQL queries. Second, an order in which to capture the re-
quested columns must be created. Once these two tasks are solved,
evaluating GQL is quite similar to the task of evaluating SQL.

The needs of GQL with regard to relational databases are simple in
that we do not require persistence or concurrency. However, the de-
sign of the buffering system makes it impossible to capture all of a
column for an entire frame and then to go back and capture another
column for the same frame. Instead, GQL requires that columns be
captured all at once with their rows arriving sporadically through-
out the frame as defined by the WHEN statement. This arrival order
limits the applicability of many query optimization and evaluation
techniques. Thus, the query processing may always be a significant
cost in debuggers of this design. This is certainly the case in our
system, which uses a lightweight, custom-built evaluation engine.

4.3.1 When-Detection System

The point of WHEN detection is to decide, based on a user-entered ex-
pression, when to start and finish capturing an OpenGL command
stream. This feature is important for large graphics programs in
which the user may wish to debug only a single triangle amongst
an entire scene of objects. GQL allows WHEN expressions to con-
tain references to OpenGL state as well as global application sym-
bols and the application’s stack. Our solution to the WHEN-detection
problem is simple: evaluate the WHEN expression every time an
OpenGL command is made.

To keep the overhead of this evaluation to an absolute minimum, we
implement a simple, lazy-evaluation system for WHEN expressions.
When a WHEN expression is active, we make note of which OpenGL
state values it references. Every state-changing OpenGL function
is then coded to consult this table to see if it’s state value is being
referenced and if so, trigger a reevaluation of that referencing WHEN
expression. To improve performance of WHEN-evaluation for appli-
cations making many immediate-mode OpenGL calls, we perform
special-case handling of WHEN blocks whose expressions are vari-
able inside drawing blocks. This special case handling occurs for
the App.Stack and GL.PrimID columns.

4.3.2 Column Planning

When a chunk of the OpenGL command stream has been captured
by the debugger, it is handed to the column planner. A list of virtual
column requests is computed by a quick traversal of all the currently
active WHEN expressions in the system. From here, the column plan-
ner’s job is to obtain all of these virtual columns from the buffered
stream. Ideally, this is to be done using a minimal number of passes.

The first pass of the column planner performs extraction of columns
belonging to the App, GL, Verts and Prims tables. Column re-
quests for the App table is filled during the initial stream capture
process since buffering application state in the way that we buffer
OpenGL state is redundant. As it turns out, the GL, Verts and
Prims tables can be captured during the buffering stage as well.
This helps streamline our column planning algorithms, allowing
certain queries to execute entirely-without buffering.

The remaining columns are treated in a two-tiered fashion. Cer-
tain columns are fundamentally dominant in the formation of ren-
dering passes; these dominant columns are typically those that re-
quire significant effort to satisfy, such as a fragment shader variable
(e.g., SFrags.normal:30). Our scheduling algorithm looks for
one of these dominant columns and, if found, tries to capture both
the dominant column and any additional columns that can be satis-
fied in the same pass. For example, we can acquire SFrags.xy and
SFrags.z in the same pass used to capture SFrags.normal:30.
Once all of the dominant columns have been captured, the sched-
uler responds to column requests on a pass-by-pass basis.

4.4 Column Acquisition

The final challenge in implementing a GQL environment is to trans-
form (using one or more passes) the input graphics stream to pro-
duce the output requested by a virtual column. The following sec-
tions discuss the methods that used in this process.

Two approaches are possible in implementing virtual column
drivers. In the theoretically elegant approach, individual Chromium
stream processing units (SPUs) are chained together during a ren-
dering pass with each SPU capturing a single GQL column. For



example, a single pass might chain together the following three
SPUs: Frags.XY -> Frags.RGB -> Frags.Z. In practice, how-
ever, the stream transformations performed by each column driver
are very simple, making this approach organizationally unneces-
sary. As a result, we opt for the monolithic stream-rewriting ap-
proach in which all of the column drivers are implemented inside
one stream processing unit.

4.4.1 Basic Shader Debugging

Many of the columns in GQL tables map to variables inside ver-
tex and fragment shaders. To get this data, we follow the same
basic approach used by developers and existing debugging systems
alike [Stephenson 2000; Purcell and Sen 2003; Olano 2005] — the
currently bound shaders are rewritten, outputting the variable of in-
terest to a render target. This approach requires a small number of
extra resources to instrument the shader programs. These resources
can range from a few extra shader instructions to an extra vertex
attribute or texture unit.

There are a number of basic tricks required to make this approach
work in practice. First, we render into an off-screen floating point
buffer rather than a standard frame buffer to avoid precision prob-
lems. Even so, numeric precision must be carefully considered
when passing and extracting integer quantities to and from the ren-
der target, as is done with the SFrags.primID virtual column, for
example. Another essential trick to production shader debugging is
the stream buffering system, which allows us to ignore the whole
problem that the available render targets can store a limited num-
ber of output channels. When we need to capture more data than is
supported by the hardware, we break the problem up into multiple
rendering passes.

When this system was first created, the only mature shading lan-
guage available that matched our needs was NVIDIA’s Cg lan-
guage. Thus, our debugger focuses on the challenge of debug-
ging shaders written in the Cg language. While this introduces
certain nuances that are Cg-specific, we see our overall approach
as portable across the gamut of shading languages, from the ARB
assembly-style languages to GLSL.

Interestingly, Cg is actually more difficult to debug than some
other languages because it compiles to an intermediate represen-
tation. Changes that we make to the high level shader can alter
variable and attribute assignment in the intermediate shader format.
Re-synchronizing the intermediate-level shader API with the new
shader requires an extra remapping step. We would not have en-
countered and addressed this issue had we done our experiments in
a language other than Cg.

Once the Cg program string is acquired through the low-level
shader interception library mentioned earlier, it is broken down into
a tree structure using a simple Bison parser. Conveniently, NVIDIA
provides an open-source Cg grammar via their web site [NVIDIA
2001]. We use this to perform a lightweight traversal of the shader’s
structure, extracting (1) structures and program arguments and (2)
line and symbol information for every line in the program. Impor-
tantly, this parsing process stores enough information to reconstruct
the original source via a tree traversal. This allows us to parse the
shader, edit the tree according to column-specific rewriting rules
and finally convert the tree back into a string representation for sub-
sequent rendering.

4.4.2 Flow Control Issues and Shader Rewriting

There are a number of basic problems that are fundamental to the
task of performing debugging by forcing early exit from any pro-
gram. The main quandary is flow control: how do we handle cases
where the variable to be inspected (henceforth called the target vari-
able) is inside a conditional block?

This is actually a two-part quandary, the first part of which is the is-
sue of return value: How do we distinguish legitimate output from
sentinel (i.e., did not execute) output? We solve this problem by
designating an arbitrary value to denote the sentinel condition. In
practice, we have to use a small range of values to compensate for
the limited precision of graphics cards’ floating point units. As sup-
port for multiple render-targets becomes more ubiquitous it may be
possible to avoid this problem entirely by dedicating a channel in
the frame buffer exclusively to a valid bit.

The more vexing dilemma with flow control is how to implement
immediate returns inside control statements. As noted in Section 2,
some shader debuggers have had the ability to exit from a shader
regardless of program-counter position. This is not the case on
current graphics hardware. Our current solution is to (recursively)
rewrite if statements so that all possible branches set a return value
for shader program.

For-loops require special treatment in our debugging model. To
capture a variable from inside a loop, the user specifies a constant
iteration number, i, at which to extract a variable. This allows us
to break the loop into two parts. The first part performs the zeroth
through i−1th iterations of the loop, then second part performs the
ith iteration, which extracts the target variable. While this approach
is somewhat ad hoc, there is no obviously better approach to this
general parallel debugging problem.

A number of other small details must also be handled during shader
rewriting. First, extracting data from secondary functions requires
us to inline the called function and then perform flow-control res-
olution on the resulting source. Second, large variables that do not
fit into the render target (e.g., matrices) must be read back and as-
sembled in several passes instead of just one.

Our approach to this problem is a short term solution to a long
term challenge facing graphics programmers: as graphics hardware
evolves more complex control flow mechanisms, the system used
to force an intermediate variable to the shader output will also need
to mature. Hardware support seems to be the clear way to achieve
this. In the interim, approaches such as ours and the one used in
Shadesmith [Purcell and Sen 2003] will likely continue as the only
alternative to software emulation.

4.4.3 The Frags/SFrags Column Driver

To acquire a column for the Frags table or the SFrags table, all
that we have to do is redirect the target variable to the shader out-
put, render the scene and read back the frame buffer into our GQL
data structures. The main challenge in the fragment program is how
capture all fragments that are generated rather than just those that
pass the z-test. To accomplish this we currently use a straightfor-
ward depth peeling algorithm [Everitt 2001]. First, we add a depth
texture sampler to the shader, as well as a parameter containing the
depth value of the current fragment. We then prepend a segment of
code to the shader that performs an early fragment kill if the depth
of the pixel is greater then the depth in the texture. The depth buffer
resulting from each pass is fed back as input to the next pass and
we iterate until no new pixels are written to the frame buffer. Fig-



float4 main(... ,

uniform samplerRECT gldbFrontDepthTex,

in float4 gldbWPOS : WPOS) : COLOR {

float2 gldbTexCoords = float2(gldbWPOS.x,

gldbWPOS.y);

float gldbFrontDepth = texRECT(gldbFrontDepthTex,

gldbTexCoords).x;

if (gldbFrontDepth+0.00001>=gldbWPOS.z)

discard;

... // compute some shading, such as a reflectVec

float4 debugVar = float4(reflectVec, 0);

return debugVar; // exit with target variable

}

Figure 8: A sample fragment program rewritten by our system. This
program is performing depth peeling and fragment variable debug-
ging, both of which have been added by the debugger. Additions
made by our system are highlighted in green.

Figure 9: Left: output from a volume rendering program. Right:
slices from the volume obtained from the SFrags table via auto-
matic depth peeling.

ure 8 shows an example of such code. An example of this process
as applied to volume renderer debugging is shown in Figure 9.

Given that our goal here is to acquire data values for all fragments,
it is worth noting that the depth peeling approach may suffer from
robustness problems in some situations. This is due to limited preci-
sion of the depth buffer and can be exacerbated by the application’s
projection matrix. If we have an additional render target available,
we can instead record the fragment’s primID in this target. Because
the primIDs are issued in increasing order, we can test the primID
rather than the depth in each successive pass so that every fragment
is captured.

Generalized capture of the primID column requires some special
handling. This fragment attribute reports which triangle, and thus
which vertices, contributed to the fragment. To perform this cap-
ture, we unshare the vertices being issued to OpenGL so that ver-
tices are unique to a primitive. Then, a custom vertex attribute cor-
responding to the primitive ID is added to the vertex and the entire
model is rendered. We add this parameter as a pass-through in the
vertex shader and alter the fragment shader so that this new ID is
output to the render target. As with all readbacks, care must be
taken when assigning primitive identifiers so that they are stable
with regard to floating point precision. The ability to perform mul-
tiple rendering passes can be used to solve this problem robustly.

As alluded to before, adding the inputs to a fragment or vertex pro-
gram can lead to implementation difficulties in languages (like Cg)
that compile to an intermediate representation. This compilation
step, which removes dead code and more importantly rearranges

struct inputs{float gldbVertID : ATTR6;

float4 Position : POSITION;

float4 Normal : NORMAL;};

struct outputs{float4 gldbReturn : TEXCOORD3;

float4 hPosition : POSITION;...};

outputs main(inputs IN,

uniform float gldbRenderWidth,

uniform float4x4 ModelViewProj,...){

outputs OUT;

OUT.hPosition = mul(ModelViewProj, IN.Position);

OUT.gldbReturn = OUT.hPosition;

...

float4 gldbVertPos;

gldbVertPos.x = ((float)((int)IN.gldbVertID.x %

(int)(gldbRenderWidth))/gldbRenderWidth)*2-1;

gldbVertPos.y = ((float)((int)IN.gldbVertID.x /

(int)(gldbRenderWidth))/gldbRenderWidth)*2-1;

gldbVertPos.zw = float2(0,1);

OUT.hPosition = gldbVertPos;

return OUT;

}

Figure 10: A sample vertex program rewritten by our system. This
program is debugging the transformed vertex coordinates which are
returned through the render target. The highlighted sections have
been added by our system.

the assignment of parameters to the intermediate registers, means
that OpenGL state bound to these intermediate registers must be re-
bound to the new register assignments. If future shading languages
and APIs take this reassignment challenge into account, the prob-
lem of shader debugging can be considerably simplified.

4.4.4 The SVerts Column Drivers

The main challenge in debugging vertex programs is creating a de-
terministic and fast way to map of vertices to pixels in the frame
buffer. This precludes simple methods where the scene is simply
rendered with points and then scoured for non-sentinel values as a
post-process.

Our solution to this problem is to provide an extra vertex attribute
that, just before the vertex program ends, is used instead of the
newly-computed vertex coordinate. The extra attribute is an vertex-
specific identifier that, when combined with a uniform parameter
for the frame buffer width, allows us to pack vertices into the frame
buffer in row-major order. This is shown in Figure 10.

After this packing step has been added, we debug a variable inside
the vertex shader using the now-familiar steps from our fragment
shader rewriting. To forward the variable to the frame buffer, we
modify the vertex program’s output structure to pass the value of
the variable being debugged. We then replace the fragment pro-
gram with a pass-through program that just outputs its one input at-
tribute. Finally, we render the entire scene using single-pixel point
primitives, perform a readback and unpacking step, and return the
results to the GQL system.

4.4.5 Other Virtual Columns

A number of drivers for GQL tables remain undiscussed, namely
the App, GL, Prims, Verts, and FB tables. As mentioned in the
GQL evaluation section, the first four of these tables are imple-
mented inside the stream processor that performs stream buffering
for performance reasons. The FB table piggy-backs on the SFrags



implementation, but disables the depth-peeling algorithm. Thus it is
possible and often useful to ask for shader variables from the frame
buffer, e.g., SELECT Normal:30 FROM Prims. Since application-
side camera control is still possible during debugging, frame buffer
pixels are often all that is needed.

We use the lazy-evaluation technique used in WHEN-detection to ef-
ficiently respond to queries over the GL and App tables. We use the
OpenGL state changes in this case to perform run-length encoding
of the columns, allowing us to lazily populate the table while also
keeping a small memory footprint. This is especially useful in re-
ducing overhead when performing profiling.

5 Practical Usage and Examples

The interface to our debugger provides three things: a way to pause
the application, a window for entering GQL commands, and a vari-
ety of tools for visualizing the tables created using GQL. One con-
sequence of using GQL so heavily in our system is that common
visualization tasks like the application of color mapping functions
can be accomplished with GQL queries, allowing us to get by with
a relatively simple user interface. In practice, the simplest visu-
alizations are most frequently used in regular debugging sessions.
The first is the table view shown in Figure 12. In a surprisingly
large number of cases, simply having access to the proper data is
sufficient to debug a graphics application.

For many graphics bugs, you can see the problem but don’t know
which vertex or triangle is to blame. Simple GQL statements and
visualizations can be combined to solve these problems quickly.
For vertices, you first “SELECT vertID,coord FROM Verts”.
From here, you just visualize the vertices as points, clicking on
the problematic points to obtain the vertex indices. To save navi-
gation time, you can match the visualization’s camera with the ap-
plication’s camera with “SELECT modelview,projection FROM
GL”. A similar approach is possible with fragments; visualizing
and picking the pixels that result from “SELECT xy,primID,rgb
FROM FB” produces the frame buffer colors plus the triangle ID that
is visible at each location. This proves useful in debugging prob-
lems that manifest only from certain angles, such as geometry mis-
alignment or texture coordinate errors.

With such large quantities of data, it is not surprising that some-
times a good visualization provides more insight than a tabular
view. Visualizations shown in Figure 11 demonstrate this — vi-
sualizing points and normals is useful for debugging lighting and
similar reflection-driven algorithms. With volume renderers, cap-
turing all fragments rather than just the frame buffer may be useful
for debugging things like lighting and color-mapping (see Figure 9).
This same approach is useful when debugging multi-pass and com-
positing algorithms.

Sometimes studying multiple frames of output is important
for graphics debugging. The view mechanism of GQL is
useful here: by creating a view of some GQL expres-
sion, e.g. “CREATE VIEW VertHistory FROM (SELECT coord
FROM SVerts)”, multiple frames of geometry will be captured.
We can then view each frame independently, or merge multiple
frames into one via “SELECT HISTORY frameID,coord FROM
VertHistory”. We expect this to be useful for debugging things
like camera movement, vertex skinning, or any other time-varying
aspect of a graphics program.

Just as GQL can delve into the finest-grained parts of the
pipeline, it may also be used for high-level profiling. For ex-
ample, draw count profiling can be done in the most general

Figure 11: A sequence of screen shots in a typical debugging ses-
sion. The top-left is an incorrectly rendered scene. The top-right is
the result of viewing the main object’s vertex coordinates and nor-
mals. We notice the normals are inverted and correct the bug in our
application program. Viewed again in the debugger, as seen in the
bottom-left and right, we see that this has indeed fixed the problem.

way in GQL using familiar SQL operations like GROUP BY and
COUNT/SUM/etc. A simple trace and profile of all the applica-
tion’s OpenGL calls can be obtained using “SELECT TIME(),
command FROM GL”. More sophisticated things are possible:
by joining “WHEN isDrawingCommand(GL.command) SELECT
command, blockID FROM GL” with “SELECT xy,blockID
FROM SFrags”, we can count both the overdraw at each pixel
along with which OpenGL drawing block responsible for the
fragment.

Finally, GQL can be used to obtain and study arbitrary OpenGL
objects. Things like textures are part of the GL table and are thus
retrieved with a simple select, e.g., “SELECT Texture[0] FROM
GL”. This approach can be particularly effective when debugging
rendered textures, although in such a case a WHEN expression is of-
ten used to set when the texture is actually captured from the GL
table. Interestingly, since drawing calls to an OpenGL pbuffer use
the same OpenGL stream as the main application context, a GQL
debugging session on an offscreen buffer is indistinguishable from
a session being applied to a regular OpenGL context.

6 Conclusions and Future Work

The system presented here is an important steps toward the creation
of a general purpose graphics debugger. While our methods are
by no means the final word on the subject, particularly when con-
sidered in terms of speed and ease-of-use, we have shown that a
general and transparent graphics debugger is feasible.

Much remains to be done on the OpenGL compatibility front of our
implementation. Support for OpenGL’s various data types, primi-
tive types and texture formats limits our debugger’s current porta-
bility. The same goes for multiple contexts, rendered textures, and
OpenGL extensions. We do not anticipate any fundamental prob-



Figure 12: Table view of debugging data.

lems in implementing these features.

The approach of this system is by no means perfect. Integration of
the graphics pipeline’s namespace with the application’s namespace
requires further study. Similarly, because we currently respond to
queries in a column-by-column fashion, we preclude a number of
clever and common query evaluation optimizations. As things stand
now, the database is our bottleneck. Coaxing performance from
such a system is an interesting problem requiring more study.

Visualization of the data that comes out of the graphics pipeline re-
mains a fascinating problem. For example, how does one visualize
the result of a join between fragments, triplets of vertices, and ex-
tracted shader variables? We have only begun to scratch the surface
of these problems with our present visualization tools. Several in-
teresting directions might be pursued, including re-tasking GQL as
a data source for existing tools like OpenDX, VTK or AVS or build-
ing an actual debugging environment around the GQL language.

In this paper, we have presented the methods, algorithms and imple-
mentation of the Graphics Query Language. This debugging engine
provides what we believe to be the first step toward the development
of an end-to-end debugging solution for modern graphics hardware.
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