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Abstract 
This paper describes a framework for introducing visually smooth 
surfaces into sketch-based freeform modeling systems. An existing 
sketch-based freeform modeling system generates rough polygonal 
meshes with uneven triangulations after each operation. Our 
approach generates a dense, visually smooth polygonal mesh by 
beautifying and refining the original rough mesh. A beautification 
process generates near-equilateral triangles with a near-uniform 
distribution of vertices to mask the noise and bad sampling of the 
uneven mesh. The vertices are distributed on a smoothed surface 
that approximately interpolates the original mesh. Refinement 
generates a smooth, dense mesh by subdividing the beautified 
mesh and moving the vertices to the interpolative surface. The 
smooth interpolative surface is computed via implicit quadratic 
surfaces that best fit the mesh locally in a least-squares sense.  
Keywords: Polygonal Meshes, Subdivision, Beautification, Skin, 
Implicit Surfaces, Sketch-based Modeling. 

1 INTRODUCTION 
Teddy [5] introduced a nice sketch-based modeling interface, but 
the resulting models were rough polygonal meshes. Their 
triangulations were uneven and the models had many undesirable 
small bumps and dents; such artifacts were introduced by almost 
all operations in the system. One could subdivide the mesh [9,20], 
but the resulting shape was not visually smooth because of the 
uneven triangulations. Our goal here is to introduce visually 
smooth surfaces like those seen in parametric and implicit models 
[17] to sketch-based modeling systems for free-form objects. 

Our approach is to beautify and refine the irregular polygonal 
meshes resulting from the original Teddy algorithms (Figure 1). A 
beautification process, based on the Skin algorithm [11], generates 
near-equilateral triangles with a near-uniform distribution of 
vertices on the surface to hide irregularities in the original 
polygonal model; then refinement generates a dense polygonal 
mesh that smoothly interpolates the beautified mesh. 

Beautification and refinement are guided by an implicit smooth 
surface that approximately interpolates the polygonal mesh. We 
compute implicit quadratic surfaces that best fit the mesh locally 
in a least-squares sense, and move the vertices to the surface 
during beautification and refinement. The implicit surfaces only 
approximately interpolate the mesh, and C1 continuity among 
adjacent surface pieces is not guaranteed. This is not acceptable if 
one wants to use the implicit surface as final output, but works 
well for guiding the beautification and refinement of polygonal 
meshes. In addition, our framework is intended to apply to simple 
rotund objects without small details, such as those in Teddy. 

One can smooth meshes with geometric fairing [1,6,14], but 
these methods are designed to remove high-frequency noise from 
dense polygonal meshes with fairly uniform vertex distributions, 
such as those arising from 3D scans; they do not work well for the 

uneven, coarse meshes seen in Teddy. They also tend to make the 
surface drift away from the original mesh. We avoid this problem 
by fitting smooth surfaces to the mesh in a least-squares sense.  

Our framework gives a basis for exploring various modeling 
operations with smooth surfaces. Given the built-in beautification 
mechanism, one can focus on the design of algorithms that 
construct arbitrary polygonal meshes without worrying about 
mesh quality or noise. 

2 ALGORITHMS 
Our basic representation for 3D geometry is a polygonal mesh. In 
response to editing operations, our system first generates an 
irregular polygonal mesh based on the algorithms introduced in 
Teddy [5]. Then we beautify the mesh internally and show the 
smoothly shaded refined mesh to the user. The algorithms have 
parameters that depend on the size of the models. The models are 
scaled to have their largest extent be 1.0. 

2.1 Overview 
The system maintains three polygonal mesh representations for 
each 3D model (Figure 2). The first is the skin mesh, which is the 
primary mesh for representing the target 3D shape. It adjusts itself 
over time through beautification. The second is the skeleton mesh, 
which is the irregular polygonal mesh created directly from the 
input strokes and serves as the reference for guiding the skin mesh 
during beautification. The third is the visible mesh, which is a 
dense, smooth polygonal mesh displayed on the screen as 
feedback to the user. The visible mesh is created from the skin 
mesh by refinement and is rendered using smooth shading. It is 
important to separate the visible mesh and skin mesh for efficient 
computation of the geometry. We describe beautification and 
refinement in detail in the following sections. 
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Figure 2: Three mesh representations. 
When the user performs an editing operation, a copy of the skin 

mesh is modified to reflect the new geometry (Figure 3). This new 
geometry (whose triangulation is uneven and contains bumps and 
dents) is used as a new skeleton mesh; a new skin (which starts 
from this new skeleton mesh and gradually beautifies itself) is 
created from it. The user always sees the smooth visible mesh 

a) original mesh b) beautified mesh c) refined mesh d) resulta) original mesh b) beautified mesh c) refined mesh d) result  
Figure 1: Overview of the algorithm. The system (a) constructs 
an uneven polygonal mesh from freeform strokes, (b) 
beautifies the mesh, (c) refines it, and (d) displays the refined 
mesh using smooth shading. 

 



 

obtained through refinement. 
When a modeling task is finished, the system stores the skin 

mesh as output. The user can use the mesh as a lightweight 
polygonal model or as a control mesh for subdivision1, and can 
also store the visible mesh if a dense polygonal mesh is desired. 
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Figure 3: An editing sequence. 
Edges along curves representing sharp ridges and creases are 

labeled as sharp. For example, the edges along the intersection 
loop resulting from a cut are labeled as sharp. We avoid blending 
surface normals of surrounding polygons at sharp edges so that 
smooth shading does not mask the sharp features. The Skin 
algorithm maintains the constraint that the sharp edges remain 
aligned along the curve [11]. 

2.2 Mesh Beautification 
Mesh beautification aims to generate a mesh with near-equilateral 
triangles and a near-uniform vertex distribution while preserving 
some original overall shape, including sharp edges. Our algorithm 
is based on the Skin algorithm [11]. The vertices of our skin mesh 
move as particles around the skeleton, repeatedly adjusting their 
position and connectivity. Each skin vertex is associated with the 
nearest point on the skeleton mesh (called the tracking point). The 
main difference between our representation and that of Skin is that 
while Skin generates a distance surface around the skeleton with a 
certain offset, our beautification process tries to generate a surface 
that approximately interpolates the original skeleton mesh. One 
can obtain similar results simply by setting the offset to zero, but 
in the original Skin algorithm this actually shrinks the mesh 
(Figure 4 top). The amount of shrinkage is small if the skeleton 
mesh is dense, but is still problematic because the shrinkage 
accumulates through repeated edit-beautification cycles. This also 
occurs in other topological fairing techniques [7,16] because they 
insert new vertices on the existing polygonal surface. 

 
Figure 4: Shrinking effect. If Skin particles stay on the 
skeleton mesh, the resulting mesh gets smaller than the 
original (left). To prevent shrinking, the particles must move 
along an interpolative smooth surface (right). 
To address this issue, we move the Skin particles along a 

smooth surface that approximately interpolates the skeleton mesh 
(Figure 4 bottom); we describe this surface in the next section.  

2.2.1. Implicit quadratic surfaces 
The many algorithms for creating interpolative parametric surfaces 
generally exhibit some artifacts due to the lack of global continuity 
[10]. Global optimization techniques can generate beautiful 
surfaces, but they are generally very slow [12]. Variational 
                                                                 

1 The result of subdivision is slightly smaller than the visible mesh. For 
more accurate results, one can optimize the control mesh so that the result 
of subdivision faithfully matches the visible mesh [3]. 

surfaces, represented by radial basis functions, are also globally 
(generically) smooth surfaces [17], but it is difficult to maintain a 
particular topology with them, and they sometimes exhibit 
unintuitive oscillations. Our approach is to compute implicit 
quadratic surfaces that best fit the mesh locally in a least-squares 
sense. This quadratic representation effectively eliminates small 
bumps and dents because of its limited degrees of freedom, and 
the least-squares fitting to neighboring vertices generates an 
aesthetically pleasing smooth surface from a coarse polyhedron. 

Levin’s approach [8] also uses least-squares fitting, but it locally 
computes a parametric surface while we locally fit implicit 
surfaces in 3D space (which makes it possible to fit shapes like 
ellipsoids perfectly). His approach also requires repeatedly solving 
a minimization problem when computing multiple positions on a 
surface. This would be prohibitively expensive when moving the 
skin vertices on the surface. On the other hand, the approach 
avoids the shrinkage problem mentioned above. 

The implicit quadratic surface is computed for each skeleton 
vertex using nearby vertices as fitting targets. The quadratic 
function is formulated as  

f(p) = f(x, y, z) = Ax2+By2+Cz2+Dxy+Eyz+Fzx+Gx+Hy+Iz+J,  
and the surface is implicitly defined as f(p)=0. We use the nearest 
13 vertices around the vertex (including the vertex itself) as targets 
for fitting.2 These are collected by a local search around the target 
vertex, which stops at edges labeled as sharp (Figure 5 left). To 
establish an orientation and to increase robustness, we also include 
extra low-weight constraints in the computation. These are 
obtained by moving each vertex in the direction of its temporary 
normal (the average of the surrounding polygon normals) with 
predefined offsets (±0.05 units). The system tries to fit the surface 
so that f(p) becomes 0 at the target vertices, 1 at outside constraints, 
and –1 at inside constraints (Figure 5 right). Constraints are given 
smaller weights (0.01).  
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Figure 5: Targets and extra constraints for least-squares fitting. 
Red points indicate target vertices and the green surface 
represents the resulting implicit quadratic surface (left). We use 
13 target vertices and additional in and out constraints (right). 

The objective function for the least-square fitting is formulated as 
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   X = (LWLT)-1LWB 
The actual least-square fitting is done by solving the matrix 

system above, where X denotes the unknown vector of coefficients 
(XT={A,B,C,D,E,F,G,H,I,J}). The weighted overconstrained fitting 
                                                                 

2 In a near-equilateral mesh, they are the vertices of the six triangles 
around the center and those of the six triangles around them. 



 

problem is WLt X = WB; multiplying by L on both sides leads to a 
solvable system. Such a system is solved once per vertex of the 
mesh.  

Once we have the quadratic function for each skeleton vertex, 
we compute the target position for each skin vertex based on its 
tracking point on the skeleton mesh. If the tracking point is at a 
vertex, we simply use the quadratic function associated with the 
vertex. If the tracking point is at an edge, we compute the target 
position using each of the two quadratic functions associated with 
the edge’s end points and linearly interpolate them according to 
the position on the edge. Similarly, the system uses quadratic 
functions associated with the three corners when the tracking point 
is on a triangle. To compute the position on the implicit quadratic 
surface, we apply a simple Newton’s method three times, using the 
tracking point as initial value. This works reasonably well because 
the initial value is already close to the solution. For vertices lying 
on a sharp edge, we compute two implicit quadratic surfaces, and 
then move the vertex to one surface and then to the other in 
sequence using Newton’s method. 
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Figure 6: Comparison of various interpolations. The original 
mesh is subdivided twice and the vertices are moved to the 
surface defined by each interpolation scheme. Figures are 
rendered using smooth shading.  
Figure 6 demonstrates the advantages of our approach. Local 

parametric interpolation (PN triangles [18]) and interpolative 
subdivision (butterfly subdivision [20]) exhibit small dents near 
the ridge that topological fairing techniques [7,16] cannot hide. 
Interpolation using radial basis functions [17] and our quadratic 
fitting both efficiently recover the smooth surface. An alternative 
solution to the problems arising in this example is to control the 
meshing so that edges are aligned to ridges; then silhouette 
problems are not so evident [19]. But this is difficult to do in 
general, and is in conflict with the behavior of skin. 
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Figure 7: Comparison of various interpolations for the 
original mesh. This figure is generated in the same way as 
Figure 6. Existing schemes interpolate the original mesh 
exactly, which inevitably amplifies the small noise in the 
original mesh.  
The piecewise quadratic surface approach may be unsuitable for 

some applications because of its approximating nature, but it 
works well for our purpose for several reasons. First, it generates a 

smooth surface from an uneven mesh with small bumps and dents; 
other methods are deliberately sensitive to these irregularities 
(Figure 7). Second, it is reasonably fast for interactive operation. 
Third, the implicit representation lets us move particles to the 
desired surface quickly, which can be difficult when using an 
interpolative subdivision scheme [6,9,20]. 

2.2.2. Computation of target edge length 
The skin algorithm requires a target edge length for guiding the 
remeshing process; edges should be shorter at high-curvature 
regions and longer at low-curvature regions. A typical approach to 
computing surface curvature is to use the immediate neighbors of 
each vertex [13,15,16], but this can be unstable when applied to 
uneven meshes. We therefore use the implicit quadratic surface 
described in the previous section to compute the local curvature. 
The curvature for a skeleton vertex p is computed as follows. We 
compute the Hessian matrix Hf(p) – the array of all second partial 
derivatives of f – and then the eigenvalues of  
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where {b1, b2} is an arbitrary orthonormal basis for the tangent 
plane at p. The principal curvature km is then e1 / ||∇ f(p)|| where 
e1 denotes the larger eigenvalue of A [2, 4]. For vertices along a 
sharp curve, we use the curvature of the curve. Given km, we set 
the target edge length to 0.8/ km . To prevent excessively long or 
short edges, we clamp to a minimum and maximum edge length3. 

This procedure determines the desired target edge length for 
each vertex, but these values may not be appropriate from a more 
global point of view. Figure 8 illustrates the problem. The 
low-curvature point v suggests a long edge length, but the long 
edges at v fail to represent the high curvature region near v. To 
prevent this, we impose the following constraint to the target edge 
length, using L(p) to denote the target edge length at vertex p: “For 
every vertex u whose distance to a vertex v is smaller than L(v), 
L(u) must be equal to or larger than L(v).” To satisfy the constraint, 
the system searches the neigbors U of each vertex v and sets L(v) 
to max (L(u), |v-u|) if L(u) < L(v) and u∈U. We use mesh distance 
as the measure of distance between vertices. 

v
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Figure 8: Postprocessing for target edge length. 

2.3 Mesh Refinement 
Mesh refinement generates a dense, smooth polygonal mesh from 
the skin mesh as feedback for the user. To do this, we subdivide 
the skin mesh, and then move the vertices to the quadratic surfaces 
fitted to the skin mesh. One can obtain smoother surfaces by 
applying the refinement process repeatedly, but we found that  a 
single refinement generates visually satisfying results as feedback 
during editing operations. 

3 IMPLEMENTATION AND RESULTS 
We are developing a prototype modeling system based on our 
surface representation. The system uses a sketching interface like 
Teddy’s, with some experimental smooth-surface editing 
operations such as filleting, creasing, and smoothly merging 
separate meshes (Figure 9). Filleting smooths the sharp corners 

                                                                 
3 The minimum edge length is set to 0.03 and the maximum to 0.3 in 

the current implementation. In the future we hope to find a way to compute 
these lengths from properties of the overall shape. 



 

resulting from cutting or extrusion. We apply a geometric fairing 
algorithm [13] to the skeleton mesh for smoothing. Creasing puts a 
sharp crease where the user draws a stroke on the object surface. 
This is done by pushing the stroke edges inwards and labeling 
them as sharp [11]. For smooth merging we compute the union of 
the two meshes and put a fillet at the intersection. As in the 
original Teddy system, these operations simply edit the polygonal 
mesh; this is significantly easier to implement than it would be 
with parametric surfaces or implicit surfaces. The accompanying 
video demonstrates the behavior of the system from the user’s 
point of view. 

b) creasea) fillet b) creasea) fillet  
Figure 9: Experimental editing operations.  
The system is implemented in Java™  (JDK1.4) and uses 

directX7 for 3D rendering. It takes a few seconds for skin 
algorithms to converge to a reasonably beautiful mesh after each 
editing operation on a high-end PC (AMD Athlon™ 1.54GHz). 
Figure 10 shows some example 3D models designed using the 
system (they show the visible mesh in our system). The duck’s 
neck is smoothly merged with the head, and the four legs are 
smoothly merged to the octopus body. The palm and the bottom of 
the foot were made by putting fillets at intersections after cutting. 

 

 
Figure 10: 3D models designed in our system. The last one 
was designed by a test user and the others by the author. 

4 LIMITATIONS AND FUTURE WORK 
There are some fundamental limitations in our technique. First, it 
works only for smooth, rounded surfaces. Second, it requires 
several empirically set constants. Third, there is as yet no 
theoretical guarantee of smoothness and robustness. 

Our least-squares fitting finds good quadratic functions in most 
cases, but the resulting surface sometimes has a “discontinuity” in 
the middle of the target fitting area (Figure 11). This is a 
fundamental problem of implicit quadratics and our only solution 
so far is to have more vertices as fitting targets and to use “in” and 
“out” hints. This prevents the problem in almost all cases in our 
experience, but we clearly need a more complete solution.  

The current implementation can represent sharp edges but not 
the tip of a cone, i.e., we handle one-dimensional singularities but 
not zero-dimensional ones. The system automatically rounds off 

sharp tips in our current implementation. Although this might be 
acceptable in most cases, we plan to search for an appropriate 
representation of such points. 

Skeleton mesh

Fitted quadratic function

 
Figure 11: A limitation of quadratic fitting. 
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