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Abstract

This paper reviews “socially interactive robots”: robots for which social human–robot interaction is important. We begin
by discussing the context for socially interactive robots, emphasizing the relationship to other research fields and the different
forms of “social robots”. We then present a taxonomy of design methods and system components used to build socially
interactive robots. Finally, we describe the impact of these robots on humans and discuss open issues. An expanded version
of this paper, which contains a survey and taxonomy of current applications, is available as a technical report [T. Fong, I.
Nourbakhsh, K. Dautenhahn, A survey of socially interactive robots: concepts, design and applications, Technical Report No.
CMU-RI-TR-02-29, Robotics Institute, Carnegie Mellon University, 2002].
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. The history of social robots

From the beginning of biologically inspired robots,
researchers have been fascinated by the possibility of
interaction between a robot and its environment, and
by the possibility of robots interacting with each other.
Fig. 1 shows the robotic tortoises built by Walter in
the late 1940s[73]. By means of headlamps attached
to the robot’s front and positive phototaxis, the two
robots interacted in a seemingly “social” manner, even
though there was no explicit communication or mutual
recognition.
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As the field of artificial life emerged, researchers
began applying principles such as stigmergy (indi-
rect communication between individuals via modifi-
cations made to the shared environment) to achieve
“collective” or “swarm” robot behavior. Stigmergy
was first described by Grassé to explain how social
insect societies can collectively produce complex be-
havior patterns and physical structures, even if each
individual appears to work alone[16].

Deneubourg and his collaborators pioneered the first
experiments on stigmergy in simulated and physical
“ant-like robots” [10,53] in the early 1990s. Since
then, numerous researchers have developed robot col-
lectives[88,106]and have used robots as models for
studying social insect behavior[87].

Similar principles can be found in multi-robot or
distributed robotic systems research[101]. Some of
the interaction mechanisms employed are communi-
cation [6], interference[68], and aggressive compe-
tition [159]. Common to these group-oriented social
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Fig. 1. Precursors of social robotics: Walter’s tortoises, Elmer and
Elsie, “dancing” around each other.

robots is maximizing benefit (e.g., task performance)
through collective action (Figs. 2–4).

The research described thus far uses principles of
self-organization and behavior inspired by social in-
sect societies. Such societies are anonymous, homo-
geneous groups in which individuals do not matter.
This type of “social behavior” has proven to be an
attractive model for robotics, particularly because it
enables groups of relatively simple robots perform
difficult tasks (e.g., soccer playing).

However, many species of mammals (including hu-
mans, birds, and other animals) often form individ-
ualized societies. Individualized societies differ from
anonymous societies because the individual matters.

Fig. 2. U-Bots sorting objects[106].

Fig. 3. Khepera robots foraging for “food”[87].

Fig. 4. Collective box-pushing[88].

Although individuals may live in groups, they form re-
lationships and social networks, they create alliances,
and they often adhere to societal norms and conven-
tions [38] (Fig. 5).

In [44], Dautenhahn and Billard proposed the fol-
lowing definition:

Social robots are embodied agents that are part of
a heterogeneous group: a society of robots or hu-
mans. They are able to recognize each other and
engage in social interactions, they possess histories
(perceive and interpret the world in terms of their
own experience), and they explicitly communicate
with and learn from each other.

Developing such “individual social” robots requires
the use of models and techniques different from “group

Fig. 5. Early “individual” social robots: “getting to know each
other” (left) [38] and learning by imitation (right)[12,13].
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Fig. 6. Fields of major impact. Note that “collective robots” and
“social robots” overlap where individuality plays a lesser role.

social” collective robots (Fig. 6). In particular, social
learning and imitation, gesture and natural language
communication, emotion, and recognition of interac-
tion partners are all important factors. Moreover, most
research in this area has focused on the application
of “benign” social behavior. Thus, social robots are
usually designed as assistants, companions, or pets, in
addition to the more traditional role of servants.

1.2. Social robots and social embeddedness:
concepts and definitions

Robots in individualized societies exhibit a wide
range of social behavior, regardless if the society con-
tains other social robots, humans, or both. In[19],
Breazeal defines four classes of social robots in terms
of: (1) how well the robot can support the social model
that is ascribed to it and (2) the complexity of the in-
teraction scenario that can be supported as follows.

Socially evocative. Robots that rely on the human
tendency to anthropomorphize and capitalize on feel-
ings evoked when humans nurture, care, or involved
with their “creation”.

Social interface. Robots that provide a “natural”
interface by employing human-like social cues and
communication modalities. Social behavior is only
modeled at the interface, which usually results in shal-
low models of social cognition.

Socially receptive. Robots that are socially passive
but that can benefit from interaction (e.g. learning
skills by imitation). Deeper models of human social

competencies are required than with social interface
robots.

Sociable. Robots that pro-actively engage with hu-
mans in order to satisfy internal social aims (drives,
emotions, etc.). These robots require deep models of
social cognition.

Complementary to this list we can add the following
three classes:

Socially situated. Robots that are surrounded by a
social environment that they perceive and react to[48].
Socially situated robots must be able to distinguish
between other social agents and various objects in the
environment.1

Socially embedded. Robots that are: (a) situated in
a social environment and interact with other agents
and humans; (b) structurally coupled with their social
environment; and (c) at least partially aware of human
interactional structures (e.g., turn-taking)[48].

Socially intelligent. Robots that show aspects of hu-
man style social intelligence, based on deep models
of human cognition and social competence[38,40].

1.3. Socially interactive robots

For the purposes of this paper, we use the term “so-
cially interactive robots” to describe robots for which
social interaction plays a key role. We do this, not to
introduce another class of social robot, but rather to
distinguish these robots from other robots that involve
“conventional” human–robot interaction, such as those
used in teleoperation scenarios.

In this paper, we focus on peer-to-peer human–robot
interaction. Specifically, we describe robots that ex-
hibit the following “human social” characteristics:

• express and/or perceive emotions;
• communicate with high-level dialogue;
• learn/recognize models of other agents;
• establish/maintain social relationships;
• use natural cues (gaze, gestures, etc.);
• exhibit distinctive personality and character;
• may learn/develop social competencies.

Socially interactive robots can be used for a vari-
ety of purposes: as research platforms, as toys, as ed-
ucational tools, or as therapeutic aids. The common,

1 Other researchers place different emphasis on whatsocially
situatedimplies (e.g.,[97]).
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underlying assumption is that humans prefer to inter-
act with machines in the same way that they interact
with other people. A survey and taxonomy of current
applications is given in[60].

Socially interactive robots operate as partners, peers
or assistants, which means that they need to exhibit a
certain degree of adaptability and flexibility to drive
the interaction with a wide range of humans. Socially
interactive robots can have different shapes and func-
tions, ranging from robots whose sole purpose and
only task is to engage people in social interactions
(Kismet, Cog, etc.) to robots that are engineered to
adhere to social norms in order to fulfill a range of
tasks in human-inhabited environments (Pearl, Sage,
etc.) [18,117,127,140].

Some socially interactive robots use deep models
of human interaction and pro-actively encourage so-
cial interaction. Others show their social competence
only in reaction to human behavior, relying on humans
to attribute mental states and emotions to the robot
[39,45,55,125]. Regardless of function, building a so-
cially interactive robot requires considering the human
in the loop: as designer, as observer, and as interaction
partner.

1.4. Why socially interactive robots?

Socially interactive robots are important for do-
mains in which robots must exhibit peer-to-peer in-
teraction skills, either because such skills are required
for solving specific tasks, or because the primary func-
tion of the robot is to interact socially with people. A
discussion of application domains, design spaces, and
desirable social skills for robots is given in[42,43].

One area where social interaction is desirable is
that of “robot as persuasive machine”[58], i.e., the
robot is used to change the behavior, feelings or atti-
tudes of humans. This is the case when robots mediate
human–human interaction, as in autism therapy[162].
Another area is “robot as avatar”[123], in which the
robot functions as a representation of, or representa-
tive for, the human. For example, if a robot is used for
remote communication, it may need to act socially in
order to effectively convey information.

In certain scenarios, it may be desirable for a robot
to develop its interaction skills over time. For exam-
ple, a pet robot that accompanies a child through his
childhood may need to improve its skills in order to

maintain the child’s interest. Learned development of
social (and other) skills is a primary concern of epi-
genetic robotics[44,169].

Some researchers design socially interactive robots
simply to study embodied models of social behav-
ior. For this use, the challenge is to build robots that
have an intrinsic notion of sociality, that develop social
skills and bond with people, and that can show empa-
thy and true understanding. At present, such robots re-
main a distant goal[39,44], the achievement of which
will require contributions from other research areas
such as artificial life, developmental psychology and
sociology[133].

Although socially interactive robots have already
been used with success, much work remains to in-
crease their effectiveness. For example, in order for
socially interactive robots to be accepted as “natural”
interaction partners, they need more sophisticated so-
cial skills, such as the ability to recognize social con-
text and convention.

Additionally, socially interactive robots will even-
tually need to support a wide range of users: differ-
ent genders, different cultural and social backgrounds,
different ages, etc. In many current applications, so-
cial robots engage only in short-term interaction (e.g.,
a museum tour) and can afford to treat all humans in
the same manner. But, as soon as a robot becomes part
of a person’s life, that robot will need to be able to
treat him as a distinct individual[40].

In the following, we closely examine the concepts
raised in this introductory section. We begin by de-
scribing different design methods. Then, we present a
taxonomy of system components, focusing on the de-
sign issues unique to socially interactive robots. We
conclude by discussing open issues and core chal-
lenges.

2. Methodology

2.1. Design approaches

Humans are experts in social interaction. Thus,
if technology adheres to human social expectations,
people will find the interaction enjoyable, feeling
empowered and competent[130]. Many researchers,
therefore, explore the design space of anthropomor-
phic (or zoomorphic) robots, trying to endow their
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creations with characteristics of intentional agents. For
this reason, more and more robots are being equipped
with faces, speech recognition, lip-reading skills,
and other features and capacities that make robot–
human interaction “human-like” or at least “creature-
like” [41,48].

From a design perspective, we can classify how so-
cially interactive robots are built in two primary ways.
With the first approach, “biologically inspired”, de-
signers try to create robots that internally simulate, or
mimic, the social intelligence found in living creatures.
With the second approach, “functionally designed”,
the goal is to construct a robot that appears outwardly
to be socially intelligent, even if the internal design
does not have a basis in science.

Robots have limited perceptual, cognitive, and be-
havioral abilities compared to humans. Thus, for the
foreseeable future, there will continue to be significant
imbalance in social sophistication between human and
robot[20]. As with expert systems, however, it is pos-
sible that robots may become highly sophisticated in
restricted areas of socialization, e.g., infant-caretaker
relations.

Finally, differences in design methodology means
that the evaluation and success criteria are almost al-
ways different for different robots. Thus, it is hard
to compare socially interactive robots outside of their
target environment and use.

2.1.1. Biologically inspired
With the “biologically inspired” approach, design-

ers try to create robots that internally simulate, or
mimic, the social behavior or intelligence found in liv-
ing creatures. Biologically inspired designs are based
on theories drawn from natural and social sciences,
including anthropology, cognitive science, develop-
mental psychology, ethology, sociology, structure of
interaction, and theory of mind. Generally speaking,
these theories are used to guide the design of robot
cognitive, behavioral, motivational (drives and emo-
tions), motor and perceptual systems.

Two primary arguments are made for drawing in-
spiration from biological systems. First, numerous
researchers contend that nature is the best model for
“life-like” activity. The hypothesis is that in order for
a robot to be understandable by humans, it must have
a naturalistic embodiment, it must interact with its
environment in the same way living creatures do, and

it must perceive the same things that humans find to
be salient and relevant[169].

The second rationale for biological inspiration is
that it allows us to directly examine, test and refine
those scientific theories upon which the design is based
[1]. This is particularly true with humanoid robots.
Cog, for example, is a general-purpose humanoid plat-
form intended for exploring theories and models of
intelligent behavior and learning[140].

Some of the theories commonly used in biologically
inspired design are as follows.

Ethology. This refers to the observational study
of animals in their natural setting[95]. Ethology
can serve as a basis for design because it describes
the types of activity (comfort-seeking, play, etc.) a
robot needs to exhibit in order to appear life-like
[4]. Ethology is also useful for addressing a range of
behavioral issues such as concurrency, motivation, and
instinct.

Structure of interaction. Analysis of interactional
structure (such as instruction, cooperation, etc.) can
help focus design of perception and cognition systems
by identifying key interaction patterns[162]. Dauten-
hahn, Ogden and Quick use explicit representations
of interactional structure to design “interaction aware”
robots[48]. Dialogue models, such as turn-taking in
conversation, can also be used in design as in[104].

Theory of mind. Theory of mind refers to those
social skills that allow humans to correctly attribute
beliefs, goals, perceptions, feelings, and desires to
themselves and others[163]. One of the critical pre-
cursors to these skills is joint (or shared) attention:
the ability to selectively attend to an object of mutual
interest[7]. Joint attention can aid design, by provid-
ing guidelines for recognizing and producing social
behaviors such as gaze direction, pointing gestures,
etc. [23,140].

Developmental psychology. Developmental psy-
chology has been cited as an effective mechanism
for creating robots that engage in natural social ex-
changes. As an example, the design of Kismet’s
“synthetic nervous system”, particularly the percep-
tual and behavioral aspects, is heavily inspired by the
social development of human infants[18]. Addition-
ally, theories of child cognitive development, such as
Vygotsky’s “child in society”[92], can offer a frame-
work for constructing robot architecture and social
interaction design[44].



148 T. Fong et al. / Robotics and Autonomous Systems 42 (2003) 143–166

2.1.2. Functionally designed
With the “functionally designed” approach, the ob-

jective is to design a robot that outwardly appears to
be socially intelligent, even if the internal design does
not have a basis in science or nature. This approach
assumes that if we want to create the impression of an
artificial social agent driven by beliefs and desires, we
do not necessarily need to understand how the mind
really works. Instead, it is sufficient to describe the
mechanisms (sensations, traits, folk-psychology, etc.)
by which people in everyday life understand socially
intelligent creatures[125].

In contrast to their biologically inspired counter-
parts, functionally designed robots generally have
constrained operational and performance objectives.
Consequently, these “engineered” robots may need
only to generate certain effects and experiences with
the user, rather than having to withstand deep scrutiny
for “life-like” capabilities.

Some motivations for “functional design” are:

• The robot may only need to be superficially so-
cially competent. This is particularly true when only
short-term interaction or limited quality of interac-
tion is required.

• The robot may have limited embodiment, capability
for interaction, or may be constrained by the envi-
ronment.

• Even limited social expression can help improve
the affordances and usability of a robot. In some
applications, recorded or scripted speech may be
sufficient for human–robot dialogue.

• Artificial designs can provide compelling interac-
tion. Many video games and electronic toys fully
engage and occupy attention, even if the artifacts
do not have real-world counterparts.

The three techniques most often used in functional
design are as follows.

Human–computer interaction (HCI) design. Robots
are increasingly being developed using HCI tech-
niques, including cognitive modeling, contextual
inquiry, heuristic evaluation, and empirical user test-
ing [115]. Scheeff et al.[142], for example, describe
robot development based on heuristic design.

Systems engineering. Systems engineering involves
the development of functional requirements to facili-
tate development and operation[135]. A basic charac-

teristic of system engineering is that it emphasizes the
design of critical-path elements. Pineau et al.[127],
for example, describe mobile robots that assist the el-
derly. Because these robots operate in a highly struc-
tured domain, their design centers on specific task
behaviors (e.g., navigation).

Iterative design. Iterative (or sequential) design, is
the process of revising a design through a series of
test and redesign cycles[147]. It is typically used
to address design failures or to make improvements
based on information from evaluation or use. Willeke
et al.[164], for example, describe a series of museum
robots, each of which was designed based on lessons
learned from preceding generations.

2.2. Design issues

All robot systems, whether socially interactive or
not, must solve a number of common design problems.
These include cognition (planning, decision making),
perception (navigation, environment sensing), action
(mobility, manipulation), human–robot interaction
(user interface, input devices, feedback display) and
architecture (control, electromechanical, system). So-
cially interactive robots, however, must also address
those issues imposed by social interaction[18,40].

Human-oriented perception. A socially interactive
robot must proficiently perceive and interpret human
activity and behavior. This includes detecting and rec-
ognizing gestures, monitoring and classifying activity,
discerning intent and social cues, and measuring the
human’s feedback.

Natural human–robot interaction. Humans and
robots should communicate as peers who know each
other well, such as musicians playing a duet[145].
To achieve this, the robot must manifest believable
behavior: it must establish appropriate social ex-
pectations, it must regulate social interaction (using
dialogue and action), and it must follow social con-
vention and norms.

Readable social cues. A socially interactive robot
must send signals to the human in order to: (1) pro-
vide feedback of its internal state; (2) allow human to
interact in a facile, transparent manner. Channels for
emotional expression include facial expression, body
and pointer gesturing, and vocalization.

Real-time performance. Socially interactive robots
must operate at human interaction rates. Thus, a robot
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needs to simultaneously exhibit competent behavior,
convey attention and intentionality, and handle social
interaction.

In the following sections, we review design issues
that are unique to socially interactive robots. Although
we do not discuss every aspect of design, we feel that
addressing each of the following is critical to building
an effective social robot.

2.3. Embodiment

We define embodiment as “that which establishes
a basis for structural coupling by creating the po-
tential for mutual perturbation between system and
environment”[48]. Thus, embodiment is grounded in
the relationship between a system and its environ-
ment. The more a robot can perturb an environment,
and be perturbed by it, the more it is embodied. This
also means that social robots do not necessarily need
a physicalbody. For example, conversational agents
[33] might be embodied to the same extent as robots
with limited actuation.

An important benefit of this “relational definition”
is that it provides an opportunity to quantify embod-
iment. For example, one might measure embodiment
in terms of the complexity of the relationship between
robot and environment over all possible interactions
(i.e., all perturbatory channels).

Some robots are clearly more embodied than others
[48]. Consider the difference between Aibo (Sony)
and Khepera (K-Team), as shown inFig. 7. Aibo
has approximately 20 actuators (joints across mouth,
heads, ears, tails, and legs) and a variety of sensors
(touch, sound, vision and proprioceptive). In con-
trast, Khepera has two actuators (independent wheel
control) and an array of infrared proximity sensors.
Because Aibo has more perturbatory channels and
bandwidth at its disposal than does Khepera, it can
be considered to be more strongly embodied than
Khepera.

2.3.1. Morphology
The form and structure of a robot is important be-

cause it helps establish social expectations. Physical
appearance biases interaction. A robot that resembles
a dog will be treated differently (at least initially) than
one which is anthropomorphic. Moreover, the relative
familiarity (or strangeness) of a robot’s morphology

Fig. 7. Sony Aibo ERS-110 (top) and K-Team Khepera (bottom).

can have profound effects on its accessibility, desir-
ability, and expressiveness.

The choice of a given form may also constrain the
human’s ability to interact with the robot. For exam-
ple, Kismet has a highly expressive face. But because
it is designed as a head, Kismet is unable to inter-
act when touch (e.g., manipulation) or displacement
(self-movement) is required.

To date, most research in human–robot interaction
has not explicitly focused on design, at least not in the
traditional sense of industrial design. Although knowl-
edge from other areas of design (including product,
interaction and stylized design) can inform robot con-
struction, much research remains to be performed.

2.3.2. Design considerations
A robot’s morphology must match its intended func-

tion [54]. If a robot is designed to perform tasks for
the human, then its form must convey an amount of
“product-ness” so that the user will feel comfortable
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Fig. 8. Mori’s “uncanny valley” (from DiSalvo et al.[54]).

using the robot. Similarly, if peer interaction is impor-
tant, the robot must project an amount of “humanness”
so that the user will feel comfortable in socially en-
gaging the robot.

At the same time, however, a robot’s design needs
to reflect an amount of “robot-ness”. This is needed
so that the user does not develop detrimentally false
expectations of the robot’s capabilities[55].

Finally, if a robot needs to portray a living creature,
it is critical that an appropriate degree of familiarity
be maintained. Mashiro Mori contends that the pro-
gression from a non-realistic to realistic portrayal of
a living thing is non-linear. In particular, there is an
“uncanny valley” (seeFig. 8) as similarity becomes
almost, but not quite perfect. At this point, the subtle
imperfections of the recreation become highly disturb-
ing, or even repulsive[131]. Consequently, caricatured
representations may be more useful, or effective, than
more complex, “realistic” representations.

We classify social robots as being embodied in four
broad categories: anthropomorphic, zoomorphic, car-
icatured, and functional.

2.3.3. Anthropomorphic
Anthropomorphism, from the Greek “anthropos”

for man and “morphe” for form/structure, is the ten-
dency to attribute human characteristics to objects with
a view to helping rationalize their actions[55]. An-
thropomorphic paradigms have widely been used to
augment the functional and behavioral characteristics
of social robots.

Having a naturalistic embodiment is often cited
as necessary for meaningful social interaction
[18,82,140]. In part, the argument is that for a robot
to interact with humans as humans do (through gaze,

gesture, etc.), then it must be structurally and function-
ally similar to a human. Moreover, if a robot is to learn
from humans (e.g., through imitation), then it should
be capable of behaving similarly to humans[11].

The role of anthropomorphism is to function as a
mechanism through which social interaction can be
facilitated. Thus, the ideal use of anthropomorphism
is to present an appropriate balance of illusion (to lead
the user to believe that the robot is sophisticated in
areas where the user will not encounter its failings)
and functionality (to provide capabilities necessary for
supporting human-like interaction)[54,79].

2.3.4. Zoomorphic
An increasing number of entertainment, personal,

and toy robots have been designed to imitate living
creatures. For these robots, a zoomorphic embodiment
is important for establishing human–creature relation-
ships (e.g., owner-pet). The most common designs are
inspired by household animals, such as dogs (Sony
Aibo and RoboScience RoboDog) and cats (Omron),
with the objective of creating robotic “companions”.

Avoiding the “uncanny valley” may be easier with
zoomorphic design because human–creature relation-
ships are simpler than human–human relationships
and because our expectations of what constitutes
“realistic” animal morphology tends to be lower.

2.3.5. Caricatured
Animators have long shown that a character does

not have to appear realistic in order to be believable
[156]. Moreover, caricature can be used to create de-
sired interaction biases (e.g., implied abilities) and to
focus attention on, or distract attention from, specific
robot features.

Scheeff et al.[142] discusses how techniques from
traditional animation can be used in social robot de-
sign. Schulte et al.[143] describe how a caricatured
human face can provide a “focal point” for attention.
Similarly, Severinson-Eklund et al.[144] describe the
use of a small mechanical character, CERO, as a robot
“representative” (seeFig. 9).

2.3.6. Functional
Some researchers argue that a robot’s embodiment

should first, and foremost, reflect the tasks it must
perform. The choice and design of physical features is
thus guided purely by operational objectives. This type
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Fig. 9. CERO (KTH).

of embodiment appears most often with functionally
designed robots, especially service robots.

Health care robots, for example, may be required to
assist elderly, or disabled, patients in moving about.
Thus, features such as handle bars and cargo space,
may need to be part of the design[127].

The design of toy robots also tends to reflect func-
tional requirements. Toys must minimize production
cost, be appealing to children, and be capable of fac-
ing the wide variety of situations that can experienced
during play[107].

2.4. Emotion

Emotions play a significant role in human behavior,
communication and interaction. Emotions are complex
phenomena and often tightly coupled to social context
[5]. Moreover, much of emotion is physiological and
depends on embodiment[122,126].

Three primary theories are used to describe emo-
tions. The first approach describes emotions in terms
of discrete categories (e.g., happiness). A good review
of “basic emotions” is[57]. The second approach char-
acterizes emotions using continuous scales or basis di-
mensions, such asarousalandvalence[137]. The third
approach, componential theory, acknowledges the im-
portance of both categories and dimensions[128,147].

In recent years, emotion has increasingly been used
in interface and robot design, primarily because of the
recognition that people tend to treat computers as they
treat other people[31,33,121,130]. Moreover, many
studies have been performed to integrate emotions into
products including electronic games, toys, and soft-
ware agents[8].

2.4.1. Artificial emotions
Artificial emotions are used in social robots for

several reasons. The primary purpose, of course, is
that emotion helps facilitate believable human–robot
interaction[30,119]. Artificial emotion can also pro-
vide feedback to the user, such as indicating the
robot’s internal state, goals and (to an extent) inten-
tions [8,17,83]. Lastly, artificial emotions can act as
a control mechanism, driving behavior and reflecting
how the robot is affected by, and adapts to, different
factors over time[29,108,160].

Numerous architectures have been proposed for
artificial emotions[18,29,74,132,160]. Some closely
follow emotional theory, particularly in terms of how
emotions are defined and generated. Arkin et al.[4]
discuss how ethological and componential emotion
models are incorporated into Sony’s entertainment
robots. Cañamero and Fredslund[30] describe an
affective activation model that regulates emotions
through stimulation levels.

Other architectures are only loosely inspired by
emotional theory and tend to be designed in an ad
hoc manner. Nourbakhsh et al.[117] detail a fuzzy
state machine based system, which was developed
through a series of formative evaluation and design
cycles. Schulte et al.[143] summarize the design
of a simple state machine that produces four basic
“moods”.

In terms of expression, some robots are only ca-
pable of displaying emotion in a limited way, such
as individually actuated lips or flashing lights (usu-
ally LEDs). Other robots have many active degrees of
freedom and can thus provide richer movement and
gestures. Kismet, for example, has controllable eye-
brows, ears, eyeballs, eyelids, a mouth with two lips
and a pan/tilt neck[18].

2.4.2. Emotions as control mechanism
Emotion can be used to determine control

precedence between different behavior modes, to
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coordinating planning, and to trigger learning and
adaptation, particularly when the environment is un-
known or difficult to predict. One approach is to use
computational models of emotions that mimic animal
survival instincts, such as escape from danger, look
for food, etc.[18,29,108,160].

Several researchers have investigated the use of
emotion in human–robot interaction. Suzuki et al.
[153] describe an architecture in which interaction
leads to changes in the robot’s emotional state and
modifications in its actions. Breazeal[18] discusses
how emotions influence the operation of Kismet’s
motivational system and how this affects its interac-
tion with humans. Nourbakhsh et al.[117] discusses
how mood changes can trigger different behavior in
Sage, a museum tour robot.

2.4.3. Speech
Speech is a highly effective method for communi-

cating emotion. The primary parameters that govern
the emotional content of speech are loudness, pitch
(level, variation, range), and prosody. Murray and
Arnott [111] contend that the vocal effects caused by
particular emotions are consistent between speakers,
with only minor differences.

The quality of synthesized speech is significantly
poorer than synthesized facial expression and body
language[9]. In spite of this shortcoming, it has proved
possible to generate emotional speech. Cahn[28] de-
scribes a system for mapping emotional quality (e.g.,
sorrow) onto speech synthesizer settings, including ar-
ticulation, pitch, and voice quality.

To date, emotional speech has been used in few
robot systems. Breazeal describes the design of
Kismet’s vocalization system. Expressive utterances
(used to convey the affective state of the robot without
grammatical structure) are generated by assembling
strings of phonemes with pitch accents[18]. Nour-
bakhsh et al.[117] describe how emotions influence
synthesized speech in a tour guide robot. When the
robot is frustrated, for example, voice level and pitch
are increased.

2.4.4. Facial expression
The expressive behavior of robotic faces is generally

not life-like. This reflects limitations of mechatronic
design and control. For example, transitions between
expressions tend to be abrupt, occurring suddenly and

Fig. 10. Actuated faces: Sparky (left) and Feelix (right).

rapidly, which rarely occurs in nature. The primary fa-
cial components used are mouth (lips), cheeks, eyes,
eyebrows and forehead. Most robot faces express emo-
tion in accordance with Ekman and Frieser’s FACS
system[56,146].

Two of the simplest faces (Fig. 10) appear on
Sparky [142] and Feelix [30]. Sparky’s face has
4-DOF (eyebrows, eyelids, and lips) which portray a
set of discrete, basic emotions. Feelix is a robot built
using the LEGO MindstormsTM robotic construction
kit. Feelix’s face also has 4-DOF (two eyebrows,
two lips), designed to display six facial expressions
(anger, sadness, fear, happiness, surprise, neutral)
plus a number of blends.

In contrast to Sparky and Feelix, Kismet’s face has
fifteen actuators, many of which often work together to
display specific emotions (seeFig. 11). Kismet’s facial
expressions are generated using an interpolation-based
technique over a three-dimensional, componential
“affect space” (arousal, valence, and stance)[18].

Perhaps the most realistic robot faces are those de-
signed at the Science University of Tokyo[81]. These
faces (Fig. 12) are explicitly designed to be human-like
and incorporate hair, teeth, and a covering silicone
skin layer. Numerous control points actuated beneath
the “skin” produce a wide range of facial movements
and human expression.

Instead of using mechanical actuation, another ap-
proach to facial expression is to rely on computer
graphics and animation techniques[99]. Vikia, for
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Fig. 11. Various emotions displayed by Kismet.

example, has a 3D rendered face of a woman based
on Delsarte’s code of facial expressions[26]. Because
Vikia’s face (seeFig. 13) is graphically rendered,
many degrees of freedom are available for generating
expressions.

2.4.5. Body language
In addition to facial expressions, non-verbal com-

munication is often conveyed through gestures and

Fig. 13. Vikia has a computer generated face.

Fig. 12. Saya face robots (Science University of Tokyo).

body movement[9]. Over 90% of gestures occur
during speech and provide redundant information
[86,105]. To date, most studies on emotional body
movement have been qualitative in nature. Frijda[62],
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Table 1
Emotional body movements (adapted from Frijda[62])

Emotion Body movement

Anger Fierce glance; clenched fists; brisk, short motions
Fear Bent head, truck and knees; hunched shoulders;

forced eye closure or staring
Happiness Quick, random movements; smiling;
Sadness Depressed mouth corners; weeping
Surprise Wide eyes; held breath; open mouth

for example, described body movements for a number
of basic emotions (Table 1). Recently, however, some
work has begun to focus on implementation issues,
such as in[35].

Nakata et al.[113] state that humans have a strong
tendency to be cued by motion. In particular, they refer
to analysis of dance that shows humans are emotion-
ally affected by body movement. Breazeal and Fitz-
patrick[21] contend humans perceive all motor actions
to be semantically rich, whether or not they were in-
tended to be. For example, gaze and body direction is
generally interpreted as indicating locus of attention.

Mizoguchi et al.[110] discuss the use of gestures
and movements, similar to ballet poses, to show emo-
tion through movement. Scheeff et al.[142] describe
the design of smooth, natural motions for Sparky. Lim
et al. [93] describe how walking motions (foot drag-
ging, body bending, etc.) can be used to convey emo-
tions.

2.5. Dialogue

2.5.1. What is dialogue?
Dialogue is a joint process of communication. It in-

volves sharing of information (data, symbols, context)
between two or more parties[90]. Humans employ a
variety of para-linguistic social cues (facial displays,
gestures, etc.) to regulate the flow of dialogue[32].
Such cues have also proven to be useful for control-
ling human–robot dialogue[19].

Dialogue, regardless of form, is meaningful only if it
is grounded, i.e., when the symbols used by each party
describe common concepts. If the symbols differ, in-
formation exchange or learning must take place before
communication can proceed. Although human–robot
communication can occur in many forms, we consider
there to be three primary types of dialogue: low-level
(pre-linguistic), non-verbal, and natural language.

Low-level. Billard and Dautenhahn[12–14] de-
scribe a number of experiments in which an au-
tonomous mobile robot was taught a synthetic
proto-language. Language learning results from mul-
tiple spatio-temporal associations across the robot’s
sensor-actuator state space.

Steels has examined the hypothesis that communi-
cation is bootstrapped in a social learning process and
that meaning is initially context-dependent[150,151].
In his experiments, a robot dog learns simple words
describing the presence of objects (ball, red, etc.), its
behavior (walk, sit) and its body parts (leg, head).

Non-verbal. There are many non-verbal forms of
language, including body positioning, gesturing, and
physical action. Since most robots have fairly rudi-
mentary capability to recognize and produce speech,
non-verbal dialogue is a useful alternative. Nicolescu
and Mataric[116], for example, describe a robot that
asks humans for help, communicating its needs and
intentions through its actions.

Social conventions, or norms, can also be expressed
through non-verbal dialogue. Proxemics, the social use
of space, is one such convention[70]. Proxemic norms
include knowing how to stand in line, how to pass
in hallways, etc. Respecting these spatial conventions
may involve consideration of numerous factors (ad-
ministrative, cultural, etc.)[114].

Natural language. Natural language dialogue is de-
termined by factors ranging from the physical and per-
ceptual capabilities of the participants, to the social
and cultural features of the situation. To what extent
human–robot interfaces should be based on natural
language remains clearly an open issue[144].

Severinson-Eklund et al.[144] discuss how explicit
feedback is needed for users to interact with service
robots. Their approach is to provide designed natural
language. Fong et al.[59,61] describe how high-level
dialogue can enable a human to provide assistance to
a robot. In their system, dialogue is limited to mobility
issues (navigation, obstacle avoidance, etc.) with an
emphasis on query-response speech acts.

2.6. Personality

2.6.1. What is personality?
In psychological terms, personality is the set of dis-

tinctive qualities that distinguish individuals. Since the
late 1980s, the most widely accepted taxonomy of
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personality traits has been the “Big Five Inventory”
[76]. The “Big Five”, which was developed through
lexical analysis, described personality in terms of five
traits:

• extroversion (sociable, outgoing, confidence);
• agreeableness (friendliness, nice, pleasant);
• conscientiousness (helpful, hard-working);
• neuroticism (emotional stability, adjusted);
• openness (intelligent, imaginative, flexibility).

Common alternatives to the “Big Five” are questi-
onnaire-based scales such as theMyers–Briggs Type
Indicator (MBTI) [112].

2.6.2. Personality in social robots
There is reason to believe that if a robot had a com-

pelling personality, people would be more willing to
interact with it and to establish a relationship with it
[18,79]. In particular, personality may provide a use-
ful affordance, giving users a way to model and un-
derstand robot behavior[144].

In designing robot personality, there are numer-
ous questions that need to be addressed. Should the
robot have a designed or learned personality? Should
it mimic a specific human personality, exhibiting spe-
cific traits? Is it beneficial to encourage a specific type
of interaction?

There are five common personality types used in
social robots.

Tool-like. Used for robots that operate as “smart
appliances”. Because these robots perform service
tasks on command, they exhibit traits usually associ-
ated with tools (dependability, reliability, etc.).

Pet or creature. These toy and entertainment robots
exhibit characteristics that are associated with domes-
ticated animals (cats, dogs, etc.).

Cartoon. These robots exhibit caricatured person-
alities, such as seen in animation. Exaggerated traits
(e.g., shyness) are easy to portray and can be useful
for facilitating interaction with non-specialists.

Artificial being. Inspired by literature and film, pri-
marily science fiction, these robots tend to display ar-
tificial (e.g., mechanistic) characteristics.

Human-like. Robots are often designed to exhibit
human personality traits. The extent to which a robot
must have (or appear to have) human personality de-
pends on its use.

Robot personality is conveyed in numerous ways.
Emotions are often used to portray stereotype person-
alities: timid, friendly, etc.[168]. A robot’s embodi-
ment (size, shape, color), its motion, and the manner
in which it communicates (e.g., natural language) also
contribute strongly[144]. Finally, the tasks a robot
performs may also influence the way its personality is
perceived.

2.7. Human-oriented perception

To interact meaningfully with humans, social robots
must be able to perceive the world as humans do,
i.e., sensing and interpreting the same phenomena that
humans observe. This means that, in addition to the
perception required for conventional functions (local-
ization, navigation, obstacle avoidance), social robots
must possess perceptual abilities similar to humans.

In particular, social robots need perception that is
human-oriented: optimized for interacting with hu-
mans and on a human level. They need to be able
to track human features (faces, bodies, hands). They
also need to be capable of interpreting human speech
including affective speech, discrete commands, and
natural language. Finally, they often must have the ca-
pacity to recognize facial expressions, gestures, and
human activity.

Similarity of perception requires more than sim-
ilarity of sensors. It is also important that humans
and robots find the same types of stimuli salient[23].
Moreover, robot perception may need to mimic the
way human perception works. For example, the human
ocular-motor system is based on foveate vision, uses
saccadic eye movements, and exhibits specific visual
behaviors (e.g., glancing). Thus, to be readily under-
stood, a robot may need to have similar visual motor
control [18,21,25].

2.7.1. Types of perception
Most human-oriented perception is based on pas-

sive sensing, typically computer vision and spoken
language recognition. Passive sensors, such as CCD
cameras, are cheap, require minimal infrastructure,
and can be used for a wide range of perception tasks
[2,36,66,118].

Active sensors (ladar, ultrasonic sonar, etc.), though
perhaps less flexible than their passive counterparts,
have also received attention. In particular, active
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sensors are often used for detecting and localizing
human in dynamic settings.

2.7.2. People tracking
For human–robot interaction, the challenge is to find

efficient methods for people tracking in the presence
of occlusions, variable illumination, moving cameras,
and varying background. A broad survey of human
tracking is presented in[66]. Specific robotics appli-
cations can be reviewed in[26,114,127,154].

2.7.3. Speech recognition
Speech recognition is generally a two-step process:

signal processing (to transform an audio signal into
feature vectors) followed by graph search (to match
utterances to a vocabulary). Most current systems use
Hidden Markov models to stochastically determine
the most probable match. An excellent introduction to
speech recognition is[129].

Human speech contains three types of information:
who the speaker is, what the speaker said, and how
the speaker said it[18]. Depending on what infor-
mation the robot requires, it may need to perform
speaker tracking, dialogue management, or emotion
analysis. Recent applications of speech in robotics in-
clude[18,91,103,120,148].

2.7.4. Gesture recognition
When humans converse, we use gestures to clarify

speech and to compactly convey geometric informa-
tion (location, direction, etc.). Very often, a speaker
will use hand movement (speed and range of motion)
to indicate urgency and will point to disambiguate spo-
ken directions (e.g., “I parked the car over there”).

Although there are many ways to recognize ges-
tures, vision-based recognition has several advantages
over other methods. Vision does not require the user
to master or wear special hardware. Additionally, vi-
sion is passive and can have a large workspace. Two
excellent overviews of vision-based gesture recogni-
tion are[124,166]. Details of specific systems appear
in [85,161,167].

2.7.5. Facial perception
Face detection and recognition. A widely used ap-

proach for identifying people is face detection. Two
comprehensive surveys are[34,63]. A large number
of real-time face detection and tracking systems have
been developed in recent years, such as[139,140,158].

Facial expression. Since Darwin[37], facial expres-
sions have been considered to convey emotion. More
recently, facial expressions have also been thought to
function as social signals of intent. A comprehensive
review of facial expression recognition (including a
review of ethical and psychological concerns) is[94].
A survey of older techniques is[136].

There are three basic approaches to facial ex-
pression recognition[94]. Image motion techniques
identify facial muscle actions in image sequences.
Anatomical models track facial features, such as the
distance between eyes and nose. Principal component
analysis (PCA) reduce image-based representations
of faces into principal components such as eigenfaces
or holons.

Gaze tracking. Gaze is a good indicator of what a
person is looking at and paying attention to. A person’s
gaze direction is determined by two factors: head ori-
entation and eye orientation. Although numerous vi-
sion systems track head orientation, few researchers
have attempted to track eye gaze using only passive
vision. Furthermore, such trackers have not proven to
be highly accurate[158]. Gaze tracking research in-
cludes[139,152].

2.8. User modeling

In order to interact with people in a human-like
manner, socially interactive robots must perceive hu-
man social behavior[18]. Detecting and recognizing
human action and communication provides a good
starting point. More important, however, is being able
to interpret and reacting to behavior. A key mecha-
nism for performing this is user modeling.

User modeling can be quantitative, based on the
evaluation of parameters or metrics. The stereotype
approach, for example, classifies users into different
subgroups (stereotypes), based on the measurement
of pre-defined features for each subgroup[155]. User
modeling may also be qualitative in nature. Inter-
actional structure analysis, story and script based
matching, and BDI all identify subjective aspects of
behavior.

There are many types of user models: cognitive,
attentional, etc. A user model generally contains at-
tributes that describe a user, or group, of users. Models
may be static (defined a priori) or dynamic (adapted
or learned). Information about users may be acquired
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explicitly (through questioning) or implicitly (inferred
through observation). The former can be time con-
suming, and the latter difficult, especially if the user
population is diverse[69].

User models are employed for a variety of purposes.
First, user models help the robot understand human
behavior and dialogue. Second, user models shape and
control feedback (e.g., interaction pacing) given to the
user. Finally, user models are useful for adapting the
robot’s behavior to accommodate users with varying
skills, experience, and knowledge.

Fong et al.[59] employ a stereotype user model to
adapt human–robot dialogue and robot behavior to dif-
ferent users. Pineau et al. discuss the use of a quantita-
tive temporal Bayes net to manage individual-specific
interaction between a nurse robot and elderly individ-
uals. Schulte et al.[143] describe a memory-based
learner used by a tour robot to improve its ability to
interact with different people.

2.9. Socially situated learning

In socially situated learning, an individual interacts
with his social environment to acquire new compe-
tencies. Humans and some animals (e.g., primates)
learn through a variety of techniques including di-
rect tutelage, observational conditioning, goal emula-
tion, and imitation[64]. One prevalent form of in-
fluence is local, or stimulus, enhancement in which
a teacher actively manipulates the perceived environ-
ment to direct the learner’s attention to relevant stimuli
[96].

2.9.1. Robot social learning
For social robots, learning is used for transferring

skills, tasks, and information. Learning is important
because the knowledge of the teacher, or model,
and robot may be very different. Additionally, be-
cause of differences in sensing and perception, the
model and robot may have very different views of the
world. Thus, learning is often essential for improving
communication, facilitating interaction, and sharing
knowledge[80].

A number of studies in robot social learning have
focused on robot–robot interaction. Some of the ear-
liest work focused on cooperative, or group, behavior
[6,100]. A large research community continues to
investigate group social learning, often referred to

as “swarm intelligence” and “collective robotics”.
Other robot–robot work has addressed the use of
“leader following” [38,72], inter-personal communi-
cation[13,15,149], imitation [14,65], and multi-robot
formations[109].

In recent years, there has been significant effort
to understand how social learning can occur through
human–robot interaction. One approach is to create se-
quences of known behaviors to match a human model
[102]. Another approach is to match observations (e.g.,
motion sequences) to known behaviors, such as mo-
tor primitives [51,52]. Recently, Kaplan et al.[77]
have explored the use of animal training techniques
for teach an autonomous pet robot to perform com-
plex tasks. The most common social learning method,
however, is imitation.

2.9.2. Imitation
Imitation is an important mechanism for learning

behaviors socially in primates and other animal species
[46]. At present, there is no commonly accepted defi-
nition of “imitation” in the animal and human psychol-
ogy literature. An extensive discussion is given in[71].
Researchers often refer to Thorpe’s definition[157],
which defines imitation as the “copying of a novel or
otherwise improbable act or utterance, or some act for
which there is clearly no instinctive tendency”.

With robots, imitation relies upon the robot hav-
ing many perceptual, cognitive, and motor capabilities
[24]. Researchers often simplify the environment or
situation to make the problem tractable. For example,
active markers or constrained perception (e.g., white
objects on a black background) may be employed to
make tracking of the model amenable.

Breazeal and Scassellati[24] argue that even if a
robot has the skills necessary for imitation, there are
still several questions that must be addressed:

• How does the robot know when to imitate? In order
for imitation to be useful, the robot must decide
not only when to start/stop imitating, but also when
it is appropriate (based on the social context, the
availability of a good model, etc.).

• How does the robot know what to imitate? Faced
with a stream of sensory data, the robot must decide
which of the model’s actions are relevant to the task,
which are part of the instruction process, and which
are circumstantial.
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• How does the robot map observed action into be-
havior? Once the robot has identified and observed
salient features of the model’s actions, it must as-
certain how to reproduce these actions through its
behavior.

• How does the robot evaluate its behavior, correct
errors, and recognize when it has achieved its goal?
In order for the robot to improve its performance, it
must be able to measure to what degree its imitation
is accurate and to recognize when there are errors.

Imitation has been used as a mechanism for learning
simple motor skills from observation, such as block
stacking[89] or pendulum balancing[141]. Imitation
has also been applied to the learning of sensor–motor
associations[3] and for constructing task representa-
tions [116].

2.10. Intentionality

Dennett[50] contends that humans use three strate-
gies to understand and predict behavior. Thephysical
stance(predictions based on physical characteristics)
and design stance(predictions based on the design
and functionality of artifacts) are sufficient to explain
simple devices. With complex systems (e.g., humans),
however, we often do not have sufficient information,
to perform physical or design analysis. Instead, we
tend to adopt anintentional stanceand assume that the
systems’ actions result from its beliefs and desires.

In order for a robot to interact socially, therefore, it
needs to provide evidence that is intentional (even if
it is not intrinsic [138]). For example, a robot could
demonstrate goal-directed behaviors, or it could ex-
hibit the attentional capacity. If it does so, then the
human will consider the robot to act in a rational
manner.

2.10.1. Attention
Scassellati[139] discusses the recognition and pro-

duction of joint attention behaviors in Cog. Just as
humans use a variety of physical social cues to in-
dicate which object is currently under consideration,
Cog performs gaze following, imperative pointing, and
declarative pointing.

Kopp and Gardenfors[84] also claim that atten-
tional capacity is a fundamental requirement for in-
tentionality. In their model, a robot must be able to
identify relevant objects in the scene, direct its sen-

sors towards an object, and maintain its focus on the
selected object.

Marom and Hayes[96–98]consider attention to be
a collection of mechanisms that determine the signifi-
cance of stimuli. Their research focuses on the devel-
opment of pre-learning attentional mechanisms, which
help reduce the amount of information that an indi-
vidual has to deal with.

2.10.2. Expression
Kozima and Yano[82,83] argue that to be inten-

tional, a robot must exhibit goal-directed behavior. To
do so, it must possess a sensorimotor system, a reper-
toire of behaviors (innate reflexes), drives that trigger
these behaviors, a value system for evaluating percep-
tual input, and an adaptation mechanism.

Breazeal and Scassellati[22] describe how Kismet
conveys intentionality through motor actions and fa-
cial expressions. In particular, by exhibiting proto-
social responses (affective, exploratory, protective, and
regulatory), the robot provides cues for interpreting its
actions as intentional.

Schulte et al.[143] discuss how a caricatured hu-
man face and simple emotion expression can convey
intention during spontaneous short-term interaction.
For example, a tour guide robot might have the inten-
tion of making progress while giving a tour. Its facial
expression and recorded speech playback can commu-
nicate this information.

3. Discussion

3.1. Human perception of social robots

A key difference between conventional and socially
interactive robots is that the way in which a human
perceives a robot establishes expectations that guide
his interaction with it. This perception, especially of
the robot’s intelligence, autonomy, and capabilities is
influenced by numerous factors, both intrinsic and ex-
trinsic.

Clearly, the human’s preconceptions, knowledge,
and prior exposure to the robot (or similar robots)
have a strong influence. Additionally, aspects of the
robot’s design (embodiment, dialogue, etc.) may play
a significant role. Finally, the human’s experience over
time will undoubtedly shape his judgment, i.e., initial
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impressions will change as he gains familiarity with
the robot.

In the following, we briefly present studies that have
examined how these factors affect human–robot inter-
action, particularly in the way in which the humans
relate to, and work with, social robots.

3.1.1. Attitudes towards robots
Bumby and Dautenhahn conducted a study to

identify how people, specifically children, perceive
robots and what type of behavior they may exhibit
when interacting with robots[27]. They found that
children tend to conceive of robots as geometric
forms with human features (i.e., a strong anthropo-
morphic pre-disposition). Moreover, children tend
to attribute free will, preferences, emotion, and
male gender to the robots, even without external
cueing.

In [78], Khan describes a survey to investigate
people’s attitudes towards intelligent service robots.
A review of robots in literature and film, followed
by a interview study, were used to design the sur-
vey questionnaire. The survey revealed that people’s
attitudes are strongly influenced by science fiction.
Two significant findings were: (1) a robot with
machine-like appearance, serious personality, and
round shape is preferred; (2) verbal communication
using a human-like voice is highly desired.

3.1.2. Field studies
Thus far, few studies have investigated people’s

willingness to closely interact with social robots.
Given that we expect social robots to play increas-
ingly larger roles in daily life, there is a strong need
for field studies to examine how people behave when
robots are introduced into their activities.

Scheeff et al.[142]conducted two studies to observe
how a range of people interact with a creature-like so-
cial robot, in both laboratory and public conditions. In
these studies, children were observed to be more en-
gaged than adults and had responses that varied with
gender and age. Also, a friendly robot personality was
reported to have prompted qualitatively better interac-
tion than an angry personality.

In [75], Huttenrauch and Severinson-Eklund de-
scribe a long-term usage study of CERO, a service
robot that assists motion-impaired people in an of-
fice environment (Fig. 9). The study was designed

to observe interaction over time, especially after the
user had fully integrated the robot into his work
routine. A key finding was that robots need to be
capable of social interaction, or at least aware of
the social context, whenever they operate around
people.

In [47], Dautenhahn and Werry describe a quantita-
tive method for evaluating robot–human interactions,
which is similar to the way ethologists use observa-
tion to evaluate animal behavior. This method has
been used to study differences in interaction style
when children play with a socially interactive robotic
toy versus a non-robotic toy. Complementing this
approach, Dautenhahn et al.[49] have also proposed
qualitative techniques (based on conversation analy-
sis) that focus on social context.

3.1.3. Effects of emotion
Cañamero and Fredslund[30] performed a study

to evaluate how well humans can recognize facial ex-
pressions displayed by Feelix (Fig. 10). In this study,
they asked test subjects to make subjective judgments
of the emotions displayed on Feelix’s face and in pic-
tures of humans. The results were very similar to those
reported in other studies of facial expression recog-
nition.

Bruce et al.[26] conducted a 2× 2 full factorial
experiment to explore how emotion expression and
indication of attention affect a robot’s ability to en-
gage humans. In the study, the robot exhibited different
emotions based on its success at engaging and lead-
ing a person through a poll-taking task. The results
suggest that having an expressive face and indicating
attention with movement can help make a robot more
compelling to interact with.

3.1.4. Effects of appearance and dialogue
One problem with dialogue is that it can lead to bi-

ased perceptions. For example, associations of stereo-
typed behavior can be created, which may lead users
to attribute qualities to the robot that are inaccurate.
Users may also form incorrect models, or make poor
assumptions, about how the robot actually works. This
can lead to serious consequences, the least of which
is user error[61].

Kiesler and Goetz conducted a series of studies to
understand the influence of a robot’s appearance and
dialogue[79]. A primary contribution of this work are
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measures for characterizing the mental models used
by people when they interact with robots. A significant
finding was that neither ratings, nor behavioral obser-
vations alone, are sufficient to fully describe human
responses to robots. In addition, Kiesler and Goetz
concluded that dialogue more strongly influences de-
velopment and change of mental models than differ-
ences in appearance.

DiSalvo et al.[54] investigated how the features
and size of humanoid robot faces contribute to the
perception of humanness. In this study, they analyzed
48 robots and conducted surveys to measure people’s
perception. Statistical analysis showed that the pres-
ence of certain features, the dimensions of the head,
and the number of facial features greatly influence the
perception of humanness.

3.1.5. Effects of personality
When a robot exhibits personality (whether in-

tended by the designer or not), a number of effects
occur. First, personality can serve as an affordance for
interaction. A growing number of commercial prod-
ucts targeting the toy and entertainment markets, such
as Tiger Electronics Furby (a creature-like robot),
Hasbro’s My Real Baby (a robot doll), and Sony’s
Aibo (robot dog) focus on personality as a way to
entice and foster effective interaction[18,60].

Personality can also impact task performance, in ei-
ther a negative or positive sense. For example, Goetz
and Kiesler examined the influence of two different
robot personalities on user compliance with an exer-
cise routine[67]. In their study, they found some evi-
dence that simply creating a charming personality will
not necessarily engender the best cooperation with a
robotic assistant.

3.2. Open issues and questions

When we engage in social interaction, there is no
guarantee that it will be meaningful or worthwhile.
Sometimes, in spite of our best intentions, the inter-
action fails. Relationships, especially long-term ones,
involve a myriad of factors and making them succeed
requires concerted effort.

In [165], Woods writes:

It seems paradoxical, but studies of the impact of
automation reveal that design of automated systems

is really the design of a new human–machine coop-
erative system. The design of automated systems is
really the design of a team and requires provisions
for the coordination between machine agents and
practitioners.

In other words, humans and robots must be able to
coordinate their actions so that they interactproduc-
tively with each other. It is not appropriate (or even
necessary) to make the robot as socially competent as
possible. Rather, it is more important that the robot be
compatible with the human’s needs, that it matches ap-
plication requirements; that it be understandable and
believable, and that it provide the interactional support
the human expects.

As we have seen, building a social robot involves
numerous design issues. Although much progress has
already been made to solving these problems, much
work remains. This is due, in part, to the broad range
of applications for which social robots are being devel-
oped. Additionally, however, is the fact that there are
many research questions that remain to be answered,
including the following.

What are the minimal criteria for a robot to be
social? Social behavior includes such a wide range
of phenomena that it is not evident which features a
robot must have in order to show social awareness or
intelligence. Clearly, a robot’s design depends on its
intended use, the complexity of the social environment
and the sophistication of the interaction. But, to what
extent does social robot design need to reflect theories
of human social intelligence?

How do we evaluate social robots? Many re-
searchers contend that adding social interaction ca-
pabilities will improve robot performance, e.g., by
increasing usability. Thus far, however, little experi-
mental evidence exists to support this claim. What is
needed is a systematic study of how “social features”
impact human–robot interaction in the context of dif-
ferent application domains[43]. The problem is that
it difficult to determine which metrics are most ap-
propriate for evaluating social “effectiveness”. Should
we use human performance metrics? Should we ap-
ply psychological, sociological or HCI measures?
How do we account for cross-cultural differences and
individual needs?

What differentiates social robots from robots that
exhibit good human–robot interaction? Although
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conventional HRI design does not directly address the
issues presented in this paper, it does involve tech-
niques that indirectly support social interaction. For
example, HCI methods (e.g., contextual inquiry) are
often used to ensure that the interaction will match
user needs. The question is: are social robots so dif-
ferent from traditional robots that we need different
interactional design techniques?

What underlying social issues may influence fu-
ture technical development? An observation made by
Restivo is that “robotics engineers seem to be driven
to program out aspects of being human that for one
reason or another they do not like or that make them
personally uncomfortable”[134]. If this is true, does
that mean that social robots will always be “benign”
by design? If our goal is for social robots to eventu-
ally have a place in human society, should we not in-
vestigate what could be the negative consequences of
social robots?

Are there ethical issues that we need to be concerned
with? For social robots to become more and more so-
phisticated, they will need increasingly better compu-
tational models of individuals, or at least, humans in
general. Detailed user modeling, however, may not be
acceptable, especially if it involves privacy concerns.
A related question is that of user monitoring. If a so-
cial robot has a model of an individual, should it be
capable of recognizing when a person is acting errat-
ically and taking action?

How do we design for long-term interaction? To
date, research in social robot has focused exclusively
on short duration interaction, ranging from periods of
several minutes (e.g., tour-guiding) to several weeks,
such as in[75]. Little is known about interaction over
longer periods. To remain engaging and empowering
for months, or years, will social robots need to be capa-
ble of long-term adaptiveness, associations, and mem-
ory? Also, how can we determine whether long-term
human–robot relationships may cause ill-effects?

3.3. Summary

As we look ahead, it seems clear that social robots
will play an ever larger role in our world, working for
and in cooperation with humans. Social robots will
assist in health care, rehabilitation, and therapy. So-
cial robots will work in close proximity to humans,
serving as tour guides, office assistants, and household

staff. Social robots will engage us, entertain us, and
enlighten us.

Central to the success of social robots will be close
and effective interaction between humans and robots.
Thus, although it is important to continue enhancing
autonomous capabilities, we must not neglect improv-
ing the human–robot relationship. The challenge is not
merely to develop techniques that allow social robots
to succeed in limited tasks, but also to find ways that
social robots can participate in the full richness of hu-
man society.
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